
1

Contents
Introduction 7
What’s New 7
KiXtart: Do You Care? 9
System Requirements 14
KiXtart 2010 Files 14
Installing KiXtart 14

To install KiXtart on the network 15
To install KiXtart on a client 15
Required files for Windows NT/2000/XP Clients 15
Required files for Windows 9x Clients 15
Uninstalling KiXtart 15
Updating from previous versions 15

Running KiXtart 16
Running KiXtart from a Batch File 17
Pre-tokenizing scripts 18
Locating Files 19

Troubleshooting KiXtart 19
Introduction 19
Common issues 19
Debug mode 21

Miscellaneous… 22
KiXtart and the console 22
COM automation in KiXtart 2010 22
Group-membership information. 25

General Syntax Rules 26
Block Commenting 27

Dynamic Program Variables 27
Expressions 31

KiXtart Command Reference 35
: 35
; 35
? 35
BEEP 36
BIG 36
BREAK 36
CALL 36
CD 37
CLS 37

KiXtart 2010 (version 4.53)

…It’s full of scripts...



KiXtart 2010

COLOR 37
COOKIE1 38
COPY 38
DEBUG 39
DEL 40
DIM 40
DISPLAY 41
DO UNTIL 41
EXIT 41
FLUSHKB 41
FOR EACH 41
FOR NEXT 42
FUNCTION 43
GET 45
GETS 45
GLOBAL 45
[GO] 45
GOSUB 46
GOTO 46
IF ELSE ENDIF 46
INCLUDE 48
MD 49
MOVE 49
PASSWORD 50
PLAY 50
QUIT 51
RD 51
REDIM 51
RETURN 52
RUN 52
SELECT CASE … ENDSELECT 52
SET 53
SETL 54
SETM 54
SETTIME 54
SHELL 55
SLEEP 55
SMALL 56
USE 56
WHILE - LOOP 57



KiXtart 2010  3

KiXtart Function Reference 58
Return Values 58
Registry Functions 58
ABS 59
ADDKEY 59
ADDPRINTERCONNECTION 60
ADDPROGRAMGROUP 60
ADDPROGRAMITEM 61
ASC 62
ASCAN 62
AT 63
BACKUPEVENTLOG 64
BOX 64
CDBL 65
CHR 66
CINT 66
CLEAREVENTLOG 66
CLOSE 67
COMPAREFILETIMES 67
CREATEOBJECT 68
CSTR 68
DECTOHEX 68
DELKEY 69
DELPRINTERCONNECTION 69
DELPROGRAMGROUP 70
DELPROGRAMITEM 70
DELTREE 71
DELVALUE 71
DIR 72
ENUMGROUP 72
ENUMIPINFO 73
ENUMKEY 74
ENUMLOCALGROUP 74
ENUMVALUE 75
EXECUTE 76
EXIST 76
EXISTKEY 76
EXPANDENVIRONMENTVARS 77
FIX 77
FORMATNUMBER 77



KiXtart 2010

FREEFILEHANDLE 78
GETCOMMANDLINE 78
GETDISKSPACE 79
GETFILEATTR 80
GETFILESIZE 81
GETFILETIME 81
GETFILEVERSION 82
GETOBJECT 84
IIF 84
INGROUP 85
INSTR 86
INSTRREV 86
INT 87
ISDECLARED 87
JOIN 87
KBHIT 88
KEYEXIST 88
LCASE 89
LEFT 89
LEN 89
LOADHIVE 90
LOADKEY 90
LOGEVENT 91
LOGOFF 92
LTRIM 92
MEMORYSIZE 93
MESSAGEBOX 93
OPEN 95
READLINE 96
READPROFILESTRING 97
READTYPE 97
READVALUE 98
REDIRECTOUTPUT 99
RIGHT 99
RND 100
ROUND 100
RTRIM 101
SAVEKEY 101
SENDKEYS 101
SENDMESSAGE 103



KiXtart 2010  5

SETASCII 104
SETCONSOLE 104
SETDEFAULTPRINTER 105
SETFILEATTR 106
SETFOCUS 107
SETOPTION 107
SETSYSTEMSTATE 108
SETTITLE 109
SETWALLPAPER 109
SHOWPROGRAMGROUP 110
SHUTDOWN 111
SIDTONAME 112
SPLIT 112
SRND 113
SUBSTR 113
TRIM 114
UBOUND 114
UCASE 114
UNLOADHIVE 115
VAL 115
VARTYPE 116
VARTYPENAME 116
WRITELINE 117
WRITEPROFILESTRING 118
WRITEVALUE 119

KiXtart Macro Reference 121
APPENDIX A: KiXtart on Windows 9x 126
Thunking and the KiXtart RPC Service 126

Choosing Where to Install the KiXtart RPC Service 126
To install the KiXtart RPC service 128
Updating the KiXtart RPC service 128
Starting the KiXtart RPC Service 129

Known Problems of KiXtart on Windows 9x 129
The ‘MAP ROOT’ issue. 130

Running KiXtart with Lmscript Emulation 131
APPENDIX B: Error handling 133
Where to find more information 134
Acknowledgements 135
About KiXtart 136
Disclaimer and distribution information. 136



KiXtart 2010



KiXtart 2010  7

Introduction
KiXtart is a logon script processor and enhanced batch scripting language for 
computers running Windows Vista, Windows Server 2003, Windows XP, 
Windows 2000, Windows NT or Windows 9x in a Windows Networking environment.

The KiXtart free-format scripting language can be used to display information, set 
environment variables, start programs, connect to network drives, read or edit the 
registry change the current drive and directory and much more.

KiXtart was developed by Ruud van Velsen of Microsoft Netherlands.

What’s New
KiXtart 2010 is based on KiXtart 2001 and KiXtart 95, and is designed to be fully 
backward compatible. All functionality provided by KiXtart 2001 and most 
functionality provided by KiXtart 95 is available with KiXtart 2010.

KiXtart 2010 is a major update with various fixes and enhancements as well as a few 
new features. Please see the following paragraphs for a list of the fixes and new features
that were added since KiXtart 2001.

KiXtart 2010 is provided to you as CareWare. Please see the paragraph entitled 
"KiXtart: Do You Care?" for full details, and join the growing community of KiXtart 
CareWare supporters!

Enhanced commands, functions, macros

AScan Fixed issue with expressions containing multiple 
AScan calls.

COPY Enhanced to enable copying a single file to a non-
existing directory.

MOVE Enhanced to enable it to overwrite files targeted 
via a UNC.

@PRODUCTTYPE Enhanced to support new versions of Windows.

ReadLine Fixed to handle huge (64MB+) files.

SendKeys Fixed regression that was introduced in 4.52.

USE LIST Now supports the /persistent flag.

Note



KiXtart 2010

USE * /delete Enhanced to delete disconnected, persistent 
connections,

For information about the latest changes to KiXtart 2010, see Kix2010.txt, in the 
Kix32 subdirectory.

Note



KiXtart 2010  9

KiXtart: Do You Care?
Introduction
KiXtart was started in 1991 as a spare time project in response to the many requests 
for logon scripting functionality for the Microsoft LAN Manager environment. 
KiXtart’s simplicity, speed and lack of competition soon made it very popular with 
LAN Manager network administrators.

KiXtart was initially distributed as freeware through bulletin boards in Europe. Later, 
Internet sites picked up on KiXtart and started distribution lists, discussion forums and 
script archives. KiXtart was also shipped as part of several Microsoft Resource Kits. 
Over time, KiXtart grew, both in popularity as well as in functionality. Windows NT 
and Windows 95 support was added, as well as lots of new functions and features.

Today, thousands of organizations worldwide use KiXtart. Banks, insurance 
companies, colleges, universities, hospitals, power plants, governmental organizations,
IT companies, car manufacturers, oil companies, aerospace industries, publishers, 
amusement parks, broadcasting companies, and numerous other types of organizations 
around the globe make daily use of KiXtart to configure workstations, install software, 
and perform many other scripting tasks.

KiXtart has also become a hot topic on various Internet discussion forums, with many 
enthusiastic participants sharing tips, tricks and scripts.

Over the years, many people have asked when KiXtart would be commercialized. In 
fact, requests for pricing and licensing information on KiXtart are quite common.

If nothing else, all of this proves that KiXtart has a value.

Rather than commercializing KiXtart, I would like to turn its value into something 
truly positive. Specifically, I would like to use its value to help people who absolutely 
need and deserve our support: the people of Nepal.

As part of this initiative, KiXtart 2010 is provided to you as so-called CareWare. 
Exactly what this means is detailed in the following paragraphs. Please read the 
information carefully and support the KiXtart CareWare initiative!

What is CareWare?
CareWare is a variant on shareware and freeware. It is sometimes also known as 
'charityware', 'donationware', 'helpware' or 'goodware', and is copyrighted software that
you are allowed to use at no charge in return for a donation to specified charity/ies or 
to a charity of the users' choice.

KiXtart CareWare can be downloaded, installed and evaluated at no charge. If you 
continue using KiXtart, you are kindly requested to make a donation to a non-profit 
charitable organization. A list of preferred charities is provided below.



KiXtart 2010

How much should we donate?
The answer to this question is in your heart. The donation amount should reflect your 
perception of the value of KiXtart for your organization. The suggested minimum 
donation amount is fifty US dollars ($50) per organization/company using KiXtart. 
Please consider that CareWare is not about making money, but about sharing with and 
caring for other people.

Making a donation is more important than the actual amount of the donation.

Note that in many countries, charitable donations to officially registered charities are 
tax deductible, so you may be able to donate more than you think!

Who should we donate to?
The following non-profit, charitable organizations that support the people in Nepal are 
preferred:

http://www.roomtoread.org/

Room to Read seeks to provide every child with an opportunity to gain the lifelong gift
of literacy by attacking the root causes of illiteracy in Nepalese society.

A dedicated group of unpaid volunteers established the foundation in 1998. One
village at a time, one school at a time, the Books for Nepal project is reaching out to

communities to provide the gift of education.

http://www.roomtoread.org/


KiXtart 2010  11

http://www.rokpa.org
ROKPA INTERNATIONAL is a non-profit organization helping and supporting
people in need irrespective of their nationality, religion or cultural background. 

ROKPA INTERNATIONAL works in the areas of education, health care, relief of
hunger and preservation of culture, self-help and ecology. The organization both

offers emergency and long-term help through its projects in Nepal, Tibet and other
countries.

If, for whatever reason, you can not donate to these particular organizations, you are 
kindly requested to donate to Unicef instead:

http://www.unicef.org

For more than 53 years UNICEF has been helping governments, communities and
families make the world a better place for children. Part of the United Nations system,
UNICEF has an enviable mandate and mission, to advocate for children's rights and

help meet their needs.

Note: more details on these organizations can be found in the GuideStar directory.

Why Nepal?
When I first visited Nepal in 1999, I became enchanted with its magnificent beauty and
its kind and hospitable people. At the same time, I was stunned by the poverty.

Nepal, home of Mount Everest, is one of the poorest countries in the world in relative 
as well as absolute terms. More than half of the population lives below the poverty line
and 53% of the people live on less than US$ 1 per day. Nepal has few natural 
resources apart from its beauty and hardworking people. Life expectancy is very low, 

http://www.guidestar.org/
http://www.unicef.org/
http://www.rokpa.org/


KiXtart 2010

and illiteracy affects more than 50% of the children. Education, medication, and even 
basic things such as clean water are a luxury in large parts of Nepal. Malnutrition is 
another widespread problem: everyday, a Nepali child goes blind for want of vitamin 
A, something that can be prevented by a medicine costing less than ten cents.

What do I get in return?
Of course, the whole concept of CareWare is about giving, not receiving. However, 
making a donation on behalf of KiXtart provides the following benefits:

• People elsewhere in the world benefit from your support.
• You get to feel good about using KiXtart.
• You motivate continued development of KiXtart.

Additionally, if you choose to register your donation, you will be kept up to date on 
KiXtart developments, and your (company) name can be included on the list of 
KiXtart CareWare sponsors. See below for details on how to register your donation.

How should we make a donation?
To make a donation, simply select the organization you would like to support, 
determine the amount you can donate, and use one of the donation methods supported 
by the organization.

When you make a donation, please include a reference to "KiXtart 2010".

Optionally, you can also register your donation by forwarding the confirmation email 
you send to or receive from the charitable organization to kixtart2001@hotmail.com or
ruudv@microsoft.com.

I can’t make a donation to charity!
If you are not able to donate money to any charity, for whatever reason, I would 
appreciate it if you could let me know why. Understanding what the problem with 
making a donation is will enable me to improve the KiXtart CareWare process.

I don’t care…
That is entirely your prerogative. The KiXtart CareWare initiative is based on your 
voluntary cooperation. KiXtart has no built-in registration process or license checks. 

Please carefully consider the value of KiXtart to you and your organization, and 
reconsider making a donation. Your support will be greatly appreciated, by me, and 
more importantly, by the organizations you donate to and the people they support. Join
the growing number of KiXtart CareWare supporters today!

mailto:ruudv@microsoft.com
mailto:kixtart2001@hotmail.com


KiXtart 2010  13

CareWare works!
Over the years, many of you have supported the
KiXtart CareWare initiative and have donated to

various organizations worldwide. In particular, your
support has enabled Room-to-Read to build a school
in Nepal exclusively funded by donations of KiXtart

users! Additionally, Room-to-Read has used your
support to create much needed children’s reading

books in the Nepali language. Please see Room-to-
Read Local Language Publications for more

information on these exciting real world results.

CareWare actually works; if you already support the
initiative, please accept my sincerest thanks for your
support. If you haven’t made a donation yet, please
take a few moments and start supporting the KiXtart

CareWare initiative today!

http://roomtoread.org/publisher_slideshow
http://roomtoread.org/publisher_slideshow


KiXtart 2010

System Requirements
KiXtart 2010 is supported on systems with an Intel 80486 or better microprocessor 
systems running Windows Server 2003, Windows XP, Windows 2000, Windows NT 
3.x/4.x, or any version of Windows 95, Windows 98 or Windows Millennium (referred
to in this document as Windows 9x). 

KiXtart is also available for the MS-DOS platform. Please check the following Web 
locations for the latest versions available:
http://kixtart.org
http://www.scriptlogic.com/kixtart
http://kixhelp.com

KiXtart 2010 Files
The KiXtart 2010 zipfile contains the following files.

Kix2010.doc This document

Kix32.exe KiXtart 2010 program file (Console version)

WKix32.exe KiXtart 2010 program file (Console-less version)

Kxrpc.exe KiXtart RPC service for Windows 9x clients

Kx95.dll Dynamic link library (DLL) for KiXtart on 
Windows 9x

Kx16.dll, Kx32.dll Support DLLs to connect to Netapi.dll on 
Windows 9x

*.kix Sample script files

*.spk Sample SPK files

Chimes.wav Sample WAV file

Kix2010.txt Release notes, containing information about the latest
changes to KiXtart 2010

Installing KiXtart
KiXtart consists of five executable components:

• Kix32.exe (or Wkix32.exe), the main program file 

• Kx16.dll, a 16-bit DLL used to connect to Netapi.dll on Windows 9x clients

• Kx32.dll, a 32-bit DLL used to connect to Netapi.dll on Windows 9x clients

• Kxrpc.exe, a Windows NT service to support Windows 9x clients

• Kx95.dll, a 32-bit dynamic link library (DLL) used by Windows 9x clients to 
connect to the KiXtart RPC service

http://kixhelp.com/
http://www.scriptlogic.com/kixtart
http://kixtart.org/


KiXtart 2010  15

All executable components can be installed on and run from the network or from the 
local hard disk of the client systems. 

To install KiXtart on the network
To install KiXtart on the network, copy the required files to the NETLOGON share of 
the logonserver(s).

To install KiXtart on a client
To install KiXtart on a client, copy the required files to a directory on the local hard 
disk. Optionally, the dynamic link libraries (DLLs) can be copied to the windows or 
the windows\system directory.

Required files for Windows NT/2000/XP Clients
Windows NT or higher clients need only install Kix32.exe.

Required files for Windows 9x Clients
Windows 9x clients must install both Kix32.exe and two dynamic-link libraries 
(DLLs) called KX16.DLL and KX32.DLL.

If Windows 9x clients are to communicate with the KiXtart RPC service, an additional 
DLL, called KX95.DLL, should also be installed. Please see the separate paragraph on
the KiXtart RPC service for full details.

KX95.DLL should only be installed if the KiXtart RPC service will be used. Without 
the KiXtart RPC service, KX95.DLL will generate unnecessary network traffic and 
delay the start of KiXtart.

Uninstalling KiXtart
To uninstall KiXtart, simply delete the executable components and scripts.

The KiXtart RPC service can be removed at the command prompt by typing the 
following command:

KXRPC –remove

Updating from previous versions
To update KiXtart for Windows NT or higher clients, replace KIX32.EXE.

To update KiXtart for Windows 9x clients, make sure to replace all components: 
KIX32.EXE, KX32.DLL and KX16.DLL. If the KiXtart RPC service is used, make 
sure to also replace KX95.DLL and KXRPC.EXE.

Note



KiXtart 2010

Failing to replace all the components can cause unexpected behavior. As a precaution, 
KiXtart checks for the correct components and will report an error in KIXTART.LOG 
if it finds an outdated component.

To update the KiXtart RPC service, stop the service (NET STOP KXRPC), replace 
KXRPC.EXE and restart the service.

Running KiXtart
KiXtart can be run manually or automatically during the logon sequence. 

To run KiXtart manually

• At the command prompt, type the following command:
kix32

By default, KiXtart automatically looks for a personal script for the current user 
("Username.KIX"). If it does not find one, it looks for the default script, 
"KIXTART.KIX". You can override this behavior by specifying one or more scripts 
after Kix32.exe on the commandline.
 

The global state of KiXtart is maintained as long as the KiXtart process runs. This 
means that if you specify multiple scripts on the commandline, any global variables 
and user-defined functions you have defined in a script will also be available to any 
subsequent scripts.

Default extensions

If you do not include an extension with a scriptname, KiXtart attempts to use two 
default extensions: “.KX” and ".KIX". Note that KiXtart 2010 no longer uses the 
".SCR" extension.

KiXtart also supports declaring variables at the command prompt, as demonstrated in 
the following example:

kix32 Demo.kix $Key=HKEY_LOCAL_MACHINE\Software
For information about valid variable names and values, see "Dynamic Program 
Variables" later in this document.

KiXtart supports the following commandline switches: 
-d Enables debug mode.

-f[:yyyy/mm/dd] Refreshes the group-membership cache.

-i Invisible mode. Prevents KiXtart from displaying a 
console window.

Note: only available in the Windows version of 
KiXtart.

Note Note



KiXtart 2010  17

-r:"eril" RPC search order. Determines the order in which 
KiXtart attempts to locate a KXRPC server. See the 
description of the KXRPC service for full details.

-t Tokenizing mode. This will cause KiXtart to pre-
tokenize the script(s) instead of running them.

See the paragraph on pre-tokenizing for more details.

-u (Un-)lock password. This option enables you to 
specify a password to encrypt or decrypt a pre-
tokenized script. The password can have any length.

See the paragraph on pre-tokenizing for more details.

-? Display KiXtart command line usage.

To run Kix32.exe automatically when a user logs on

On Windows 2000/XP:

1. Open Users and Computers and select the user.

2. Right-Click, select Properties, and then select the Profile tab.

3. In the Logon Script box, type "Kix32".

On Windows NT:

1. In User Manager, select the user.

2. On the File menu, click Properties, and then click Profile.

3. In the Logon Script Name box, type "Kix32".

 

For Windows 9x clients, do not specify a KiXtart script in the Logon Script Name 
box in the User Environment Profile dialog box in User Manager. To specify a script
for Windows 9x clients, use a batch file as the logon script, and start KiXtart from the 
batch file.

Running KiXtart from a Batch File
Kix32.exe can be run from a batch file that is used as the logon script for the user. For 
example, if Kix32.exe is in the root directory of the NETLOGON share, the batch file 
might contain the following commands: 

@ECHO OFF
%0\..\Kix32.exe

Use of the syntax %0\..\ is discussed in Knowledge Base article Q121387.

If Kix32.exe was installed on the client's local hard disk, you must refer to the local 
directory, for example: C:\Kixtart\Kix32.exe. 

Note Note



KiXtart 2010

On computers running Windows 9x, KiXtart can also be started by using Lmscript 
emulation. For more information, see "Running KiXtart with Lmscript Emulation" 
later in this document.

Pre-tokenizing scripts
KiXtart 2010 provides an option to pre-tokenize scripts. This feature takes a regular, 
clear text script, converts it to so-called ‘tokens’ and stores the result as a new file. 
Tokenized scripts are smaller and can be processed faster than clear text scripts. 
Additionally, tokenized scripts are encrypted and contain a signature to protect against 
accidental changes in the script. These features provide a level of security unavailable 
with clear text scripts.

The level of security provided by tokenizing a script qualifies as ‘obsfucation’. In 
practical terms this means that tokenized scripts are perfectly safe from attempts at 
viewing or changing them by regular end users. However, tokenized scripts are not 
safe from attacks by people with enough time and determination on their side. As a 
rule, you should never store any valuable or sensitive data, such as administrative 
passwords, in scripts (including tokenized scripts).

Additional protection of scripts can be achieved by using the password-protection 
option. Scripts that have been protected with a password can only be used by 
specifying the correct password on the KiXtart commandline.

To pre-tokenize a script, simply specify the ‘/t’ option on the commandline:

KIX32 demo.kix /t

To pre-tokenize a script and protect it with a password, combine the ‘/t’ option with 
the ‘/u’ option on the commandline:

KIX32 demo.kix /t /u=YourSecretPassword

Tokenized scripts are stored using the original filename appended with the “.kx” 
extension. The example above would produce a file with the name “demo.kx”.

Using the INCLUDE statement you can combine multiple scripts into a single pre-
tokenized script.

Tokenized scripts can be run from the KiXtart commandline as well as by using the 
CALL command.  Note however, that CALL cannot be used to run tokenized files 
have been protected with a password. 

Note



KiXtart 2010  19

KiXtart does not provide a way to convert pre-tokenized scripts back into clear text 
scripts. If you use the pre-tokenizing feature, always make sure to maintain copies of 
the original source scripts.

Locating Files
During the logon sequence, KiXtart  automatically tries to locate all files that it is 
asked to open (SPK, WAV, TXT, and so on) by searching for them first on the 
NETLOGON drive, then on the drive where KiXtart  was started from, and finally in 
the current directory. This behavior can be overridden by prepending the filename with
a drive letter or a UNC path. 

For example, the following command:
play file "Jbond.spk"

causes KiXtart to search for Jbond.spk on the NETLOGON share, in the KiXtart 
startup directory, and in the current directory.

If this command is used:
play file "C:Jbond.spk"

KiXtart searches for Jbond.spk only in the current directory of the C drive.

Note that functions built on native Windows API’s such as ReadProfileString and 
WriteProfileString use a different algorithm for locating files, and will search the 
directory into which Windows was installed if no searchpath was specified.

Troubleshooting KiXtart

Introduction
KiXtart provides extensive logging of system errors, such as failure to locate support 
DLLs, failure to connect to the RPC service, and so on. On computers running 
Windows NT, these errors are logged in the system event log. On computers running 
Windows 9x, the errors are logged in a text file named Kixtart.log, which is stored in 
the Temp or Windows directory.

KiXtart supports the new automatic DrWatson functionality of Windows XP. If you 
encounter an exception error with KiXtart, and the DrWatson dialog is displayed, 
please do select the ‘Send Report’ option. Doing so will greatly help with the research 
and resolution of any issues in KiXtart.

Common issues
The following table describes the most common problems encountered by KiXtart.

Note Note



KiXtart 2010

Error Meaning Solution

The macro @ADDRESS 
returns an empty string 
("").

KiXtart failed to find a 
NetBIOS interface on any of
the network bindings.

Make sure a NetBIOS 
interface is available on one 
of the bindings.

The macro @FULLNAME
returns an empty string 
("").

KiXtart cannot retrieve the 
network information.

On Windows NT, make sure
the Workstation service is 
running. 

On Windows 9x, make sure 
that the support DLLs are 
available. 

Also check the event log or 
kixtart.log for any errors.

KiXtart does not recognize 
certain commands.

Although KiXtart is a free-
format language, some 
literals, such server names 
that contain a hyphen (-), 
can cause errors. 

Enclose literals in quotation 
marks.

Errors such as "Label not 
found" or "Unknown 
command" appear in an 
otherwise faultless script.

There is probably an 
unmatched quotation mark 
or similar error somewhere 
in the script.

Proofread your script.

Failed to initialize 
RASMAN.DLL.

Caused by a ‘half-
installation’ of the RAS 
client software. Installation 
either wasn’t completed, or 
the uninstallation left 
RASAPI32.DLL on the 
system.

Remove RASAPI32.DLL 
from the system, or 
complete the installation of 
the RAS client.



KiXtart 2010  21

Application error 
c0000006H / 
‘IN_PAGE_ERROR’ / 
‘SWAP_ERROR’ or an 
Invalid Page Fault is 
generated intermittently.

The operating system has 
failed to read code from 
executable file(s) because 
the KiXtart startup drive has
become unavailable.

Make sure that you do not, 
in any way, disconnect or 
re-redirect the drive from 
which KIX32.EXE was 
started. Also, these faults 
can be caused by antivirus 
software. If you use 
antivirus software, make 
sure you are using the latest 
version and if the problem 
persists, test if disabling the 
antivirus software solves the
problem.

Lastly, if you are using the 
Windows version of KiXtart
(WKIX32.EXE) in a 
batchfile, please make sure 
to run it using the START 
command with the /W 
and /B options.

To include quotation marks in a string, either use the CHR function, or enclose the 
entire string in quotation marks. For example, 

"String with a quote (‘) in it."

or:

"String with a double quote " + Chr(34) + " in it."

Debug mode
KiXtart provides a basic debug facility. In debug mode, a script can be executed 
statement by statement, the value of variables or macros can be displayed, and you can 
execute arbitrary script commands. To run a script in debug mode, specify ‘/d’ on the 
command line. Alternatively, you can enter and leave debug mode anywhere in a script
using the DEBUG ON and DEBUG OFF commands.

Note: debug mode can be completely disabled from within a script using 
SetOption( "DisableDebugging", "On").

In debug mode, the top line of the screen is used to display the current line in the script
starting at the current statement. Optionally, the second line of the screen is used to 
display the value of a specific variable or macro.

In debug mode, the following keys are available to control script execution: 

Tip



KiXtart 2010

F5 Run (deactivates debug mode, runs rest of script to the end 
or until a DEBUG ON command is encountered).

F8, <Space>, <Enter> Step into (run a single statement, follow thread into 
subroutines, UDF’s, and secondary scripts).

F10 Step over (run a single statement, executes, but skips over 
subroutines, UDF’s, and secondary scripts as far as the 
debugger is concerned).

\ (Backslash) Enables you to query the value of a variable, array element 
or macro simply by typing the name and pressing <Enter>. 
Similarly, you can execute an arbitrary piece of KiXtart 
code simply by typing it in and pressing <Enter>.

<Esc>, ‘q’ Exit KiXtart.

Miscellaneous…

KiXtart and the console
KiXtart is provided in two ‘flavors’: the standard console-based version and a 
Windows version. The Windows version will only display a console if and when any 
output is sent to the screen. If desired, this behavior can be overridden using the /I 
(Invisible) commandline option. 

By default, the Windows version of KiXtart runs as an asynchronous process. This 
means that if you start WKIX32.EXE from a batchfile, the batchfile will not wait for 
KiXtart to exit and will continue processing. This behavior can cause problems if 
KiXtart is being used as part of the logon process, especially on Windows 9x clients. 
To prevent these problems, WKIX32.EXE should be started from a batchfile using the 
START command with the wait option, e.g.: "START /W WKIX32.EXE". Optionally,
on Windows NT or higher, you can also specify the /B option with the START 
command, to prevent the creation of an additional window.

The console version behaves exactly like KiXtart 95, and will automatically cause a 
console window to be created upon startup.

COM automation in KiXtart 2010
COM Automation is a way for applications (such as Word and Excel) to expose 
functionality to other applications, including scripting languages such as KiXtart. This 
provides an easy way to access properties and call methods of other applications from 
within a script.

Note: the new COM automation support in KiXtart 2010 replaces the OLE functions in
previous versions of KiXtart.

Note



KiXtart 2010  23

Creating a Reference to a COM Object
A reference to a COM object can be created by assigning the return value of the 
CreateObject or GetObject function to a variable:

$Object = CreateObject("WScript.Shell")

$ExcelSheet = CreateObject("Excel.Sheet")

$Root = GetObject("LDAP://RootDse")

Releasing an Object
Object references are automatically released if and when a variable becomes out of 
scope. To explicitly release an object reference, simply assign the value 0 (zero) to the 
variable holding the object handle:

$Object = 0

Using an Object's Properties and Methods
You can use the object.property syntax to set and return an object's property values or 
the object.method syntax to use methods on the object. For example, you could set the 
Caption property of the Application object as follows:

$xlApp = CreateObject("Excel.Application")
$xlApp.Caption = "MyFirstObject"

You could call the Quit method of the Microsoft Excel Application object like this:

$xlApp.Quit

In general, it is a good idea to be as specific as possible when referring to methods or 
properties of objects defined by other applications or projects.

Default Properties
Some objects support a default property or method. KiXtart provides limited support 
for reading of default properties within string or numeric expressions. Default 
properties are not supported when assigning an object reference to a variable. KiXtart 
also does not support setting the value of default properties.

Sample 1: accessing a default property in an expression: 

$XL = CreateObject("EXCEL.Application")
? SubStr($XL,1,10) ; will display ‘Microsoft’

Sample 2: assigning an object reference to a variable:

$XL = CreateObject("EXCEL.Application")



KiXtart 2010

$AnotherReference = $XL ; Assigns reference to $XL

Use of default properties is discouraged as it makes scripts harder to read and error-
prone.

COM Automation Samples
The following three sample scripts demonstrate just a few of the ways in which COM 
automation can be used in KiXtart scripts. Please consult the Microsoft Developer 
Network (MSDN) for more information on the many possibilities of COM automation.

Sample 1: script using COM automation and Active Directory Services Interface 
(ADSI) to retrieve various global properties of an LDAP server: 

$root = GetObject("LDAP://RootDSE")

$root.GetInfo

? "ADSPath: " + $root.ADSPath
? "GUID   : " + $root.GUID
? "Name   : " + $root.Name
? "Parent : " + $root.Parent
? "DNC    : " + $root.defaultNamingContext

Sample 2: script using COM automation and Windows Management Instrumentation 
(WMI) to enumerate the logical disks of the local system: 

$Drives = GetObject("winmgmts:").ExecQuery("select 
Name,DriveType from Win32_LogicalDisk")

if @error <> 0
   ? @error + " / " @serror
else
   for each $Drive in $Drives
       ? $Drive.Name
   next
endif

Sample 3: script demonstrating how to start Excel and add data to a worksheet:

$oXL = CreateObject("EXCEL.application")

if @error = 0
   $oXL.Visible = 1 ; make Excel visible to the user

   $Rc = $oXL.Workbooks.Add ; add a new workbook

   $array = "Order #", "Amount", "Tax"

Note



KiXtart 2010  25

   $oXL.Range("A1:C1").Value = $array ;add some columns

   For $i = 0 To 19
      $oXL.Cells(($i+2),1).Value = "ORD" + ($i + 1000)
      $oXL.Cells(($i+2),2).Value = rnd() / 100
   Next

   ;Fill the last column with a formula to compute the 
sales tax.
   $oXL.Range("C2").Resize(20, 1).Formula = "=B2*0.07"

   ;Format the worksheet
   $oXL.Range("A1:C1").Font.Bold = 1
   $Rc = $oXL.Range("A1:C1").EntireColumn.AutoFit

   $oXL.UserControl = 1
else
   ? @error + " / " @serror
endif

Group-membership information.

Introduction.
KiXtart provides functions to test or enumerate the group-membership of the current 
user (specifically: InGroup() and EnumGroup()). These functions operate on an in-
memory list of groups the user is a member of. This list is filled once during every 
KiXtart session (in other words: once every time you run KIX32.EXE). 

Previous versions of KiXtart always queried the logonserver for the group-membership
information. This provided information on both local and global groups in the 
logondomain. KiXtart retrieves group-membership information using the security 
token of the current user. The benefit of the new method is that KiXtart can now 
support universal groups as well as nested global groups.

Because a security token is created during the logon of a user and does not change 
while that user is logged on, changes to the user’s group-membership are not visible to 
KiXtart until the next time the user logs on.

Group-membership information cache.
As both methods of retrieving the group-membership are relatively costly in terms of 
network traffic and process time the latest update of KiXtart caches the group-
membership information in the registry. This means that once the cache is filled, 
subsequent runs of KIX32.EXE will require much less time to retrieve the group-
membership information.

Note



KiXtart 2010

The group-membership cache is stored in the registry hive of the current user and 
contains security-identifier-to-groupname mappings. Changes to a user's group-
membership are automatically handled by KiXtart during the next logon.

If an existing group is renamed, that change will not be visible to KiXtart until the 
next time the token-cache is refreshed.

The cache is automatically refreshed every 30 days.

A refresh of the cache can also be forced using the new '/f' commandline option:

KIX32 <yourscript> /f

Optionally, you can include a date, indicating how old the cache must be for it to be 
refreshed:

KIX32 <yourscript> /f:2001/12/31

The group-membership cache feature of KiXtart is only available on Windows NT or 
higher.

General Syntax Rules
KiXtart is a free-format scripting language. The language is case-insensitive. This 
means that

IF @PRIV="ADMIN" DISPLAY "ADMIN.TXT" ELSE DISPLAY "USER.TXT" 
ENDIF

is equivalent to

If @PRIV = "ADMIN"
      Display "ADMIN.TXT"
Else
      Display "USER.TXT"
Endif

When using KiXtart, note the following rules:

• Strings can contain any characters, except the \0 (NULL) and \x1a (end of file) 
characters.

• Script commands should be separated by white space — that is, any combination 
of spaces, tabs, or new line characters.

• Strings must be enclosed in quotation marks. For example:
'String with a dash (-) in it.'   ; String with a dash (-) in it.

Note Note



KiXtart 2010  27

Block Commenting
A "comment" is a sequence of characters beginning with a forward slash/asterisk 
combination (/*) that is treated as a single white-space character by KiXtart and is 
otherwise ignored. A comment can include any combination of characters from the 
representable character set, including newline characters, but excluding the "end 
comment" delimiter (*/).Comments can occupy more than one line but cannot be 
nested. Comments can appear anywhere a white-space character is allowed. The 
compiler ignores the characters in the comment.

Use comments to document your code. This example is a comment accepted by the 
compiler:

/* Comments can contain keywords such as
   for and while without generating errors. */

Comments can appear on the same line as a code statement:

?  "Hello"  /* Comments can go here */

Dynamic Program Variables

Introduction
In KiXtart, variables are used to temporarily store values during the execution of a 
script. Variables have a name (the word you use to refer to the value the variable 
contains) a type (which determines the kind of data the variable can store) and a scope 
(which determines where in the script you can reference the variable). You can think of
a variable as a placeholder in memory for an unknown value. 

Storing data in variables
Variables can be assigned a particular value by using an assignment statement: 

$Variable = 10

or by using a GET or GETS statement : 

GET $Variable

Optionally, variables can be created and assigned a value on the commandline with 
which KiXtart is started. To do this, type the variable name followed by an equal sign 
(=) and the value the variable should have. For example:

KIX32 Demo.kix $Key=Value



KiXtart 2010

On the commandline, do not include spaces between the equal sign (=) and the value. 
If you want to specify a value that contains spaces, enclose it in quotation marks (for 
example, KIX32 Demo.kix $Key="Hi there").

Declaring Variables
To declare a variable is to tell the program about it in advance. You declare a variable 
with the Dim or the Global statement, supplying a name for the variable:

DIM variablename

Variables declared with the Dim statement exist only as long as the script segment in 
which the Dim statement was used is executing. When the script segment completes, 
the variable, and its value, disappear. Variables declared with the Global statement 
exist during the entire KiXtart session.

A variable name: 
• Can't contain operator characters (+,-,*,/,&,<,>,=)
• Can’t contain a period
• Must be unique within the same scope, which is the range from which the 

variable can be referenced in a script, or script segment.

You can use the same name for variables in different scopes, and if you do, you will 
only be able to reference the variable in the current scope. Please see the example 
below for more details: 

$Var = 10

IF InGroup( "Admins" )

   DIM $Var ; local variable with same name

   $Var = 20

   ? $Var ; this will display ‘20’

ENDIF

? $Var ; this will display ‘10’

Implicit declaration
By default, variables do not have to be declared before they can be used. You can 
implicitly declare them simply by assigning a value to them. Note that all variables that
are declared in this way have a global scope (see below for details on scope).

Note Note



KiXtart 2010  29

Optionally, implicit declaration can be disabled using the Explicit option (see the 
SetOption for details). If implicit declaration is disabled, all variables must be 
explicitly declared before they can be used.

Scope of variables
Depending on how and where they are declared, variables can have a local or a global 
scope. Variables with a global scope are visible anywhere in any script during the 
entire KiXtart session. Variables with a local scope are only visible to the script or 
script segment in which they were created.

Examples: 

$GlobalVariable = 10
Assuming this is the first reference to 
‘$GlobalVariable’, this variable is implicitly 
declared and will become a global variable, visible
everywhere in every script during this KiXtart 
session.

DIM $LocalVariable

$LocalVariable = 10

This variable will become a local variable and will
be visible only in the current script.

IF $X = 1

   DIM $LocalVariable

   $LocalVariable = 10

ENDIF

In this example, $LocalVariable will only be 
visible inside the IF statement.

GOSUB Demo

EXIT 1

:Demo

DIM $LocalVariable

$LocalVariable = 10

RETURN

In this example, $LocalVariable will only be 
visible inside the subroutine ‘Demo’.



KiXtart 2010

Variable types
In KiXtart, variables are always of one fundamental data type: Variant. The current 
implementation of KiXtart uses three types of variants: long integers, doubles (8-byte 
floating point numbers) and strings. A variant of type string can contain up to 32,000 
characters. Integer variables can contain any value between -2,147,483,648 and 
2,147,483,647. The type of a variable is automatically changed to the result of the 
expression that is assigned to it. This means that if you assign a string to a variable 
containing an integer, the type of the variable is changed to a string.

There is no limit to the number of variables that can be defined, other than the amount 
of memory available to KiXtart.

Note that KiXtart can handle other types of variants, such as Booleans, Bytes, etc. 
KiXtart itself does not create these types, but they may be returned by other programs 
via COM automation. If any of these types of variants is used in an expression, it will 
be converted to the appropriate type before the expression is evaluated.

Arrays
KiXtart supports arrays with up to 60 dimensions. Arrays allow you to refer to a series 
of variables by the same name and to use a number (an index) to tell them apart. This 
helps you create smaller and simpler code in many situations, because you can set up 
loops that deal efficiently with any number of cases by using the index number. Arrays 
have both upper and lower bounds, and the elements of the array are contiguous within
those bounds. Because KiXtart allocates space for each index number, avoid declaring 
an array larger than necessary.

When declaring an array, follow the array name by the upper bound in square brackets.
The upper bound cannot exceed 2,147,483,647.
Arrays can be declared with zero elements:

Examples:

Dim $Counters[14] ; explicit declaration
Dim $Sums[20,3] ; explicit declaration

$NewArray = 10,20,30 ; implicit declaration

$Array = "A1","B2","C3" ; implicit declaration

Dim $MyArray[]

The first declaration creates an array with 15 elements, with index numbers running 
from 0 to 14. The second creates a two dimensional array of 21 by 4 elements. The 
third and fourth declarations create arrays with 3 elements, with index numbers 
running from 0 to 2. The fifth declaration creates an array with zero elements.

Arrays always have type variant.



KiXtart 2010  31

Unlike regular variables, arrays can not be used inside strings and can not be assigned 
a value on the commandline.

Expressions
KiXtart supports three types of expressions: string, integer and double.
A string expression can consist of any combination of the following:

• Literals (a sequence of characters enclosed in quotation marks)

• Functions that return a string

• Object references

• Plus signs (+), which indicate concatenated sub-expressions

Integer and double expressions can consist of any combination of:

• Sub-expressions

• Numeric values (in decimal, hexadecimal or floating point notation, see below for
details)

• Functions that return a numeric value

• Object references

•  Numeric operators (+,  – , *, /, mod, &, |)

Decimal notation:
[-|+]<digits>

Hexadecimal notation:
[-|+]<&digits>

Floating point notation:
[-|+]<digits.>[digits][e<exponent>]

KiXtart support the following numeric operators: 

+ Used to sum two numbers.

- Used to find the difference between two numbers or to indicate the 
negative value of a numeric expression.

* Used to multiply two numbers.

/ Used to divide two numbers and return an integer result.

mod Used to divide two numbers and return only the remainder.

& Performs a bitwise mathematical AND operation on two numbers.

| Performs a bitwise mathematical OR operation on two numbers.

^ Performs a bitwise mathematical XOR operation on two numbers.

Note



KiXtart 2010

~ Performs a bitwise mathematical negation operation on a number.

To specify a number in hexadecimal notation, prepend it with an ampersand (‘&’).

Both string and numeric expressions can contain the following conditional and logical 
operators: 

• < less than

• > greater than

• = equal (case insensitive)

• <> not equal

• <= less than or equal

• >= greater than or equal

• == equal (case sensitive)

• Not

• And

• Or

A string expression can contain up to 32,000 characters. Any macros, or references to 
environment strings within a string (e.g.: "String with the macro @USERID in it.") are 
resolved before the string is evaluated. 
By default, references to variables inside strings (e.g.: "String with a $Var in it.") are 
also resolved before the string is displayed. The only exceptions to this rule are arrays 
and object references, which can not be used inside strings. To use arrays or object 
references in combination with strings, you have to use concatenation. Note that you 
can disable resolving of variables or macros inside strings by using the 
NoVarsInStrings or NoMacrosInStrings options (see SetOption for full details).

The characters @, %, or $ are normally used to indicate macros, environment strings, 
or variables. If you want to use these characters in a string, use @@, %%, or $$. 

The following examples show the correct use of expressions in KiXtart:

$X = 1 + "20" ; $X type = integer / value = 21.

$X = &10 + &A ; $X type = integer / value = &1A (26).

$X = "1" + "20" ; $X type = string / value = '120'.

$X = @USERID + "1" ; $X type = string / value = 'USER1'.

"Current time =  " + @time    ; prints: "Current time = 12:34:00"

Note



KiXtart 2010  33

"Use @@time to print the time"    ; prints: "Use @time to print the 
time "

$Y = "And this is how you access environment variables: %USERNAME%..."

IF @Day='Sunday' AND @USERID = 'RuudV'

$X = (@MONTHNO=3 AND @MDAYNO>=20) OR @MONTHNO=4

IF @WKSTA="VLEERBEER" OR @WKSTA="PALOMINE"

$X = ((@YDAYNO + 7) / 7) + 1

; Old style use of variables inside a string: 
"Use of a variable $Var inside a string."

New, preferred style to use variables in combination with strings: 
"Use of a variable " + $Var + " inside a string."

Strings in the script are displayed on the screen in the current character size starting 
from the current cursor position. For information about character size, see the BIG and
SMALL commands.

A string can be enclosed in single or double quotation marks. To specify quotation 
marks in a string, either use the CHR function or enclose the entire string in the 
opposite type of quotation marks — .that is, if you want to include single quotation 
marks in a string, enclose the string in double quotation marks, and vice versa.

The following examples show the correct use of string expressions in KiXtart:

Code Output

"Hi "+ @userid Hi Ruudv

'Double quote in a string: (")’ Double quote in a string: (")

"Single quote in a string: (')" Single quote in a string: (')

"More double quote: " + Chr(34) More double quote: "

KiXtart determines the type of the expression from the first element of the expression.



KiXtart 2010

Operator precedence
When several operations occur in an expression, KiXtart evaluates and resolves each 
part of the expression in a predetermined order. This predetermined order is known as 
operator precedence.

Parentheses can be used to override the order of precedence and force some parts of an
expression to be evaluated before other parts. Operations within parentheses are 
always performed before those outside the parentheses. Within parentheses standard 
operator precedence is maintained.

The precedence of operators affects the grouping and evaluation of operands in 
expressions. Expressions with higher-precedence operators are evaluated first.

The following table summarizes the precedence of the supported operators, listing 
them in order of precedence from highest to lowest. Where several operators appear 
together, they have equal precedence and are evaluated from left to right.

Operator Type of operation
[ ] ( ) . Expression
+ - ~ NOT Unary
* / mod Multiplicative
+ - ^ Addition
< > <= >= Relational
= == Equality
AND OR Logical AND, logical OR



KiXtart 2010  35

KiXtart Command Reference
KiXtart accepts the commands described in the following sections.

In this documentation, square brackets ([ ]) indicate optional arguments, and angle 
brackets (< >) indicate required arguments.

:

Defines a label within the script file to which you can transfer control.

:label

Labels must be unique within a script or user defined function and cannot contain 
whitespace characters. Labels can be defined inside script segments (for example 
inside a WHILE – LOOP segment), but you cannot jump to such a label from outside 
the segment.
Also, labels in INCLUDE files are only allowed inside user-defined functions.

;

Indicates a comment. Subsequent characters on the script line are ignored.

;

Block Commenting  .   

?

Indicates a new line. This moves the cursor position to the beginning of the next line.

?

Note Action Syntax Remarks ActionSyntaxSee alsoActionSyntax



KiXtart 2010

BEEP

Plays the default sound.

BEEP

BIG

Changes the character mode to large characters.

BIG

When BIG is used, subsequent screen output is 8 characters wide and 8 characters 
high. Use SMALL to reset the character mode to normal.
BIG is ignored when screen output is redirected to a file.

BREAK

Enables (BREAK ON) or disables (BREAK OFF) the CTRL+C/BREAK keys and the 
Close command. This effectively allows control over whether a script run by KiXtart 
can be interrupted or not.
BREAK <ON | OFF>

By default, to prevent users from inadvertently interrupting a script, KiXtart 
automatically disables the CTRL+C/BREAK keys, removes the Close command in the 
System menu of the current command-prompt window, and hides the Please wait 
while your logon script executes message box on Windows 9x.

In a multi-tasking environment such as Windows NT, users cannot be fully prevented 
from interrupting a program. (Programs can be stopped by using the Task List, for 
example.) As an additional protection, on computers running Windows NT 
Workstation only, when BREAK is OFF (the default) KiXtart also installs a special 
event handler for the current console. The effect of this handler is that whenever a user
forcibly terminates KiXtart, the user is automatically logged off. This also means that 
you must be careful when testing scripts.

CALL

Runs a separate KiXtart script.

CALL "script name"

Action Syntax Action SyntaxRemarksActionSyntaxRemarksActionSyntax



KiXtart 2010  37

When the called script ends or when a RETURN statement is encountered, script 
execution continues at the statement following the CALL statement in the calling 
script.

Theoretically, there is no limit to the number of scripts that can be nested. Obviously, 
the practical limit on the number of scripts you can call is determined by the amount of
available memory at the time KiXtart runs, the size of the scripts, the number of 
variables defined, and so on.

Note that CALL cannot be used to run tokenized files have been protected with a 
password.

CD

Changes the current working directory to the directory specified.

CD "directory"

Check the value of @ERROR to see if CD was successful.

CLS

Clears the screen and moves the cursor to position 0,0.

CLS

The CLS command is ignored if all output has been redirected to a file using the 
REDIRECTOUTPUT function.

COLOR

Sets the color attribute to be used in subsequent display statements.

COLOR Xx/Yy

X Foreground color

x Optional intensity indication

Y Background color

y Optional blink indication

Colour codes:
Character Low intensity High intensity

Remarks Action Syntax RemarksActionSyntaxRemarksActionSyntaxParameters



KiXtart 2010

N Black Dark grey
B Dark blue Light blue
G Dark green Light green
C Dark cyan Light cyan
R Dark red Light red
M Magenta Pink
Y Brown Yellow
W Light grey White

If the foreground color is followed by a plus sign (+), the color is displayed with high 
intensity.

Specifying a plus sign (+) with the background color causes the color to be displayed 
blinking.

COLOR w+/b Bright white text on a blue background

COLOR g/r Green text on a red background

$ForeGround = "y+"

$BackGround = "n"

COLOR $ForeGround/$BackGround Bright yellow text on a black background

$NewColor = "b+/g"

COLOR $NewColor Bright blue text on a green background

COOKIE1

Creates a cookie, or semaphore-file, that the Windows 9x Logon API uses to determine
whether the script has finished running. This command is only useful when KiXtart is 
being used to emulate Lmscript.exe. For more information, see "Lmscript Emulation," 
earlier in this document.

COOKIE1

COPY

Copies one or more files or directories.

COPY "source" "destination" [/h] [/s]

If the source or destination specifies a directory, please make sure to add a trailing 
backslash.

Remarks Examples Action SyntaxActionSyntax



KiXtart 2010  39

/c Continue operation, even if errors occur.

/h Copies hidden and system files also.

/r Overwrite read-only files.

/s Copies directories and subdirectories, 
including empty ones.

Wildcards are supported.
If a file already exists at the destination, it is overwritten without warning.

; The following examples copy all files in MyDir to NewDir
COPY "S:\MyDir\*.*" "S:\NewDir\*.*"
COPY "S:\MyDir\." "S:\NewDir\."
COPY "S:\MyDir\" "S:\NewDir\"

; If the target (directory) does not exist, and the target specification
; does not have a trailing backslash, COPY will fail with 
; errorcode 3 ("path not found")
COPY "S:\MyDir\" "S:\NewDir" ; fails if NewDir does not exist

; This command will copy all files that match the wildcard specification
; and change their extension to '.bak'
COPY "MyDir\file*.txt" "MyDir\file*.bak"

DEBUG

Activates or de-activates debug mode at runtime.
In debug mode, the top line of the screen is used to display the current line in the script
starting at the current statement. Optionally, the second line of the screen is used to 
display the value of a specific variable or macro.

The following keys are available to control script execution in debug mode:
Key Action/description

F5 Run (deactivates debug mode, runs rest of script to the
end or until a DEBUG ON command is encountered).

F8, <Space>, <Enter> Step into (run a single statement, follow thread into 
subroutines, UDF’s, and secondary scripts).

F10 Step over (run a single statement, executes, but skips 
over subroutines, UDF’s, and secondary scripts as far 
as the debugger is concerned).

‘\’ (Backslash) Enables you to query the value of a variable, array 
element or macro simply by typing the name and 
pressing <Enter>. Similarly, you can execute an 

Remarks Examples Action



KiXtart 2010

arbitrary piece of KiXtart code simply by typing it in 
and pressing <Enter>.

<Escape>, ‘Q’ Terminate script execution and exit KiXtart.

DEBUG "ON" | "OFF"

DEBUG ON is ignored if debug mode has been disabled using 
SetOption( "DisableDebugging", "On").

DEL

Deletes a file.

DEL "file name" [/h] [/s]

/c Continue operation, even if errors occur.

/f Overwrite read-only files.

/h Deletes hidden and system files also.

/p Postpone action until next system reboot.

/s Delete specified files from all 
subdirectories.

DEL does not prompt the user to confirm the deletion.
Wildcards are supported.

DIM

Declare one or more local variables. 

DIM "variable1" [<,>"variablex"]

Local variables are visible only in the current script or script segment.

DIM $Variable

DIM $Array[9] ; Note : declaration of an array of 10 elements.

IF $X = 1
   DIM $Var1, $Var2, $Var3
ENDIF

Syntax Remarks Action SyntaxRemarksActionSyntaxRemarksExamples



KiXtart 2010  41

DISPLAY

Displays the contents of a file on the screen, starting at the current cursor position.
DISPLAY "file name"

DO UNTIL

Loops until an expression becomes true.

DO 
statements... 

UNTIL "expression"

DO UNTIL loops can be nested as many times as memory allows.

EXIT

Exits the current KiXtart script, or, if used at the topmost level, exits KiXtart. Exit can 
also be used to leave a UDF.

EXIT [error level / exit code]

If EXIT is followed by a numeric expression, then @ERROR is set to the value of that
expression and you can check it in the calling script or batchfile.

FLUSHKB

Flushes all pending characters from the keyboard buffer.

FLUSHKB

FOR EACH

Repeats a group of statements for each element in an array or collection.

FOR EACH $element IN group
statements…

NEXT

Action Syntax Action SyntaxRemarksActionSyntaxRemarksActionSyntaxActionSyntax



KiXtart 2010

FOR EACH loops can be nested as many times as memory allows.

Parameters
Element

Variable used to iterate through the elements of the collection or array..

Group
Name of an object collection or array.

The For Each block is entered if there is at least one element in group. Once the loop 
has been entered, all the statements in the loop are executed for the first element in 
group. As long as there are more elements in group, the statements in the loop continue
to execute for each element. When there are no more elements in group, the loop is 
exited and execution continues with the statement following the Next statement.

Dim $MyArray[10]
For Each $Element In $MyArray
   ? $Element
Next

$Root = GetObject( "LDAP://localhost" )
For Each $Obj in $Root
   ? $Obj.name
Next

FOR NEXT

Repeats a group of statements a specified number of times.

FOR $counter = start TO end [STEP step] 
statements… 

NEXT

FOR NEXT loops can be nested as many times as memory allows.

Parameters
Counter

Numeric variable used as a loop counter.

Start
Initial value of $counter.

End
Final value of $counter.

Remarks Examples Action Syntax



KiXtart 2010  43

Step
Amount counter is changed each time through the loop. If not specified, step 
defaults to one. The step argument can be either positive or negative. The value of 
the step argument determines loop processing as follows: 

Value Loop executes if 

Positive or 0 $counter <= end 

Negative $counter >= end 

Once the loop starts and all statements in the loop have executed, Step is added to 
counter. At this point, either the statements in the loop execute again (based on the 
same test that caused the loop to execute initially), or the loop is exited and execution 
continues with the statement following the Next statement.

Changing the value of counter while inside a loop can make it more difficult to read 
and debug your code.

For $Count = 0 To 10 Step 2
   ? $Count
Next

FUNCTION

Declares the name, arguments, and code that form the body of a Function procedure. 

A Function procedure is a separate procedure that can take arguments, perform a series
of statements, and change the values of its arguments. A Function procedure can be 
used on the right side of an expression in the same way you use any intrinsic function, 
such as Len or Asc, when you want to use the value returned by the function.

Function name [(argument1, argument2, [optional]argumentx)]
   [statements]
   [name = expression]
EndFunction 

Parameters
Name

Name of the Function. Note that the name must be unique and can not be the same 
as a label within the same scope.

Argumentlist
List of variables representing arguments that are passed to the Function procedure 
when it is called. Multiple variables are separated by commas.  All arguments are 
passed by value. If an argument is preceded by the OPTIONAL keyword, the 
argument is not required, and all subsequent arguments in the list must also be 
optional and declared using the OPTIONAL keyword.

Remarks Example Action Syntax



KiXtart 2010

Statements
Any group of statements to be executed within the body of the Function procedure.

Expression
Return value of the Function.

Function procedures have a global scope, that is, they are visible to all other scripts 
and procedures in the scripts. The value of local variables in a Function is not 
preserved between calls to the procedure.

You cannot define a Function procedure inside another procedure.

The Return statement causes an immediate exit from a Function procedure. Program 
execution continues with the statement that follows the statement that called the 
Function procedure. Any number of Return statements can appear anywhere in a 
Function procedure.

You call a Function procedure using the function name, followed by the argument list 
in parentheses, in an expression.

Note:  Function procedures can be recursive, that is, they can call themselves to 
perform a given task. However, recursion can lead to stack overflow. 

To return a value from a function, assign the value to the function name. Any number 
of such assignments can appear anywhere within the procedure. If no value is assigned 
to name, the procedure returns an empty value.

Variables used in Function procedures fall into two categories: those that are explicitly
declared within the procedure and those that are not. Variables that are explicitly 
declared in a procedure (using Dim) are always local to the procedure. Variables that 
are used but not explicitly declared in a procedure are global.

Note: a procedure can use a variable that is not explicitly declared in the procedure, 
but a naming conflict can occur if anything you have defined at the script level has the 
same name. If your procedure refers to an undeclared variable that has the same name 
as another procedure or variable, it is assumed that your procedure is referring to that 
script-level name.

Function ReadNC( ServerName )
  $ReadNC = ""
  $Root = GetObject( "LDAP://" + ServerName + "/rootDSE" )
  If @ERROR = 0
     $ReadNC = $Root.defaultNamingContext
  Endif
EndFunction

Remarks Examples



KiXtart 2010  45

GET

Accepts a single character from the keyboard and stores the character in a variable.

GET $x

The character is stored in the specified script variable. If a function key, such as F1, is 
pressed, GET returns 0, and @ERROR returns the key code of the function key.

GETS

Reads a line of characters from the keyboard until the <ENTER> key is pressed, and 
stores the result in a variable.

GETS $x

GLOBAL

Declare one or more global variables. 

GLOBAL "variable1" [<,>"variablex"]

Global variables are visible everywhere in every script during the current KiXtart 
session.

GLOBAL $X
GLOBAL $X, $Y, $Z

[GO]

Changes the current drive.

[GO] drive

Use GO if you want to specify a variable as the drive to change to.

GO A:
A:
GO $2

Action Syntax Remarks ActionSyntaxActionSyntaxRemarksExamplesActionSyntaxRemarksExamples



KiXtart 2010

GOSUB

Causes script execution to continue at the first statement after a label.

GOSUB <label>

Label can be an expression.
When a RETURN statement is encountered, script execution continues at the 
statement following the GOSUB statement.

Note that you can not GOSUB into or out of an INCLUDE file.

? "This demonstrates calling a subroutine"
GOSUB "Demo"
? "End of demonstration…"
EXIT 1
:Demo
? "We are in the subroutine now…"
RETURN

GOTO

Causes script execution to continue at the first statement after a label.

GOTO <label>

Label can be an expression.
Note that you can not GOTO into or out of an INCLUDE file.

GOTO "end"

$string = "end"
GOTO $string

IF ELSE ENDIF

Conditionally runs statements.

IF expression
statement1

....
[ELSE

statement2

Action Syntax Remarks ExamplesActionSyntaxRemarksExamples ActionSyntax



KiXtart 2010  47

 .... ]
ENDIF

The body of an IF statement is executed selectively depending on the value of the 
expression. If expression is true, then statement1 is executed. If expression is false and 
the ELSE clause is specified, then statement2 is executed.

IF statements can be nested as many times as memory allows.

If the expression does not contain any relational operators, the condition is considered 
to be true if it is numeric and it evaluates to a value other than zero, or if it is 
alphanumeric and it evaluates to a string containing at least one character.

Note that by default, all string comparisons are made case-insensitive. This behavior 
can be changed using the SetOption function. Please see the description of the 
SetOption function for full details.

IF $X ; similar to IF $X <> 0
; do stuff

ENDIF

IF @HOMESHR ; similar to IF @HOMESHR <> ""
; do stuff

ENDIF

IF INGROUP("Admins") ; similar to IF INGROUP("Admins") > 0
; do stuff

ENDIF

IF NOT INGROUP("Domain Admins") ; true if user NOT a Domain Admin
; do stuff

ENDIF

IF $X*2 < 10
; do stuff

ENDIF

IF (($X*2) < 10) OR ($Y + 100) /3 >120
; do stuff

ENDIF

IF INSTR(%PATH%,"NETLOGON") AND @DOS = "3.51"
; do stuff

ENDIF

IF (SUBSTR(@WKSTA,11,1)="1" AND @USERID = "PETERV") OR  @DOMAIN = 
"VleerBeer"

; do stuff
ENDIF

IF @USERID = "RUUDV" OR @USERID = "WIMW"

Remarks Examples



KiXtart 2010

; do stuff
ENDIF

IF (INGROUP("Domain Users") OR INGROUP("Users"))
; do stuff

ENDIF

INCLUDE

INCLUDE tells KiXtart to treat the contents of a specified file as if those contents had 
appeared in the script at the point where INCLUDE appears. You can organize script 
code into include files and then use INCLUDE to add this code to any script.

Include files can be "nested"; that is, an INCLUDE statement can appear in a file 
named by another INCLUDE statement. Nesting of include files can continue up to 20 
levels.

Include files can contain user-defined functions as well as direct script code. Note that 
the direct script code (i.e.: the code outside user-defined functions) cannot contain 
labels and that you can not jump into or out of an INCLUDE file.

INCLUDE is most useful when pre-tokenizing files: include-files are effectively 
merged with the script containing the INCLUDE statements and the end-result is 
stored as a single pre-tokenized file.

INCLUDE "include-scriptname"

Include-scriptname can include an absolute path (“C:\SCRIPTS”) or a relative path 
(“..\DATA\SCRIPTS”). If you specify a relative path, the path is calculated from the 
current directory of the KiXtart process.

Note that INCLUDE statements are processed during the pre-processing phase of 
KiXtart at which point macros, variables and functions are not yet available. As such, 
INCLUDE only supports a single, flat string and you can not use macros, variables or 
functions in this string.

Script code in INCLUDE files that is not inside user-defined functions cannot contain 
labels and you can not jump into or out of an INCLUDE file. 

Action Syntax Remarks



KiXtart 2010  49

MD

Creates a new folder. If necessary, automatically creates any missing intervening 
folders.

MD "directory"

Check the value of @ERROR to see if MD was successful (@ERROR = 0).

MOVE

Moves or renames files and directories. 

MOVE "source" "destination" [/c] [/h] [/p] [/r] [/s]

If the source or destination specifies a directory, please make sure to add a trailing 
backslash. If the destination exists, the source will be moved below the destination. If 
the destination does not exist, the source will be renamed.

/c Continue operation, even if errors occur.

/h Moves/renames hidden and system files 
also.

/p Postpone action until next system reboot.

/r Overwrite read-only files.

/s Renames specified files in all 
subdirectories.

Wildcards are supported.
MOVE overwrites existing files without warning.

; If NewDir does not exist, this command will RENAME MyDir to NewDir:
MOVE "S:\MyDir\" "S:\NewDir\"

; If NewDir does exist, this command will MOVE MyDir below NewDir:
MOVE "S:\MyDir\" "S:\NewDir\"

; This command will change the extension of all files matching the
; wildcard specification to '.bak'
MOVE "MyDir\file*.txt" "MyDir\file*.bak"

Action Syntax Remarks ActionSyntaxRemarksExamples



KiXtart 2010

PASSWORD

No function; supported only for compatibility with KiXtart 2.3x.

PASSWORD "password"

PLAY

Plays ‘music’ on the computer's speaker, by using the SPK file format described 
below, or on a sound card by playing a WAV file.

PLAY [FILE "path\filename.spk"] | "string" | "path\filename.wav"
There are four possible syntax forms:

• PLAY FILE "Jbond.spk"

• PLAY "0g256t 0g8d247f 4d165f 247f 8d262f 4d165f 262f 8d277f 4d165f"

• PLAY FILE "Ding.wav"

• PLAY "Chimes.wav"

The string or file consists of a sequence of commands indicating the frequency and 
duration of the tones to play. The following commands are available:

• F or f - frequency
This command causes a tone to be produced at the current frequency. The initial 
current frequency is 1000Hz. To change the value, indicate the desired frequency 
immediately followed by the f character. For example, to produce a tone at 
1500Hz, specify 1500F.

• G or g - gap
This command sets the number of timer ticks (1 second = 18 ticks) of silence 
between individual tones. The number of timer ticks between tones is specified as a
number immediately followed by G. The initial value is 0.

• D or d - duration
This command sets the length (in timer ticks) of each tone. For example, to make 
each tone last about a third of a second, use the command 6d.

• T or t - tempo
This command scales the duration of each tone. This allows you to change the 
duration of a series of tones globally, without having to change each of the 
individual duration commands.A tempo value of 256 indicates normal tempo. A 
value of 4df lasts:

• 2 timer ticks, when the tempo is set to 128

Action Syntax Action Syntax



KiXtart 2010  51

• 4 timer ticks, when the tempo is set to 256

• 8 timer ticks, when the tempo is set to 512

KiXtart automatically selects the appropriate action based on the file name extension 
you provide.
PLAY"0g256t 0g8d247f 4d165f 247f 8d262f 4d165f 262f 8d277f 4d165f

277f   8d262f   4d165f 262f 8d247f 4d165f 247f 8d262f 4d165f
262f   8d277f   4d165f 277f 8d262f"

This plays the part of the James Bond theme.

QUIT

Exits KiXtart.

QUIT [error level / exit code]

If QUIT is followed by a numeric expression, then the value of that expression is used 
as the exit code of KiXtart, and you can check it using a batch file.

RD

Removes the directory specified. Note: the directory must be empty for this command 
to succeed, unless the ‘/s’ option is used.

/s Removes specified directory and all files and subdirectories below it.

RD "directory" [/s]

Check the value of @ERROR to see if RD was successful.

REDIM

Declares dynamic-array variables, and allocates or reallocates storage space at 
procedure level. 

REDIM [PRESERVE] "variable1" [<,> [PRESERVE] "variablex"]

If the Preserve keyword is specified, each dimension except for the rightmost one must
be the same as those of the existing array. The values in the existing array are copied 
into the new array: if the new array is smaller, the existing values are discarded; if the 
new array is bigger, the extra elements will be empty.

Remarks Example Action SyntaxRemarksActionSyntaxRemarksActionSyntaxRemarks



KiXtart 2010

REDIM $MyArray[20]

REDIM PRESERVE $Array[9] ; Note : preserves contents of the array.

REDIM PRESERVE $FirstArray[9] , PRESERVE $NextArray[10]

RETURN

Causes script execution to continue at the statement following the last CALL or 
GOSUB statement, and also returns from inside a UDF.

RETURN

If RETURN is specified in the main script, KiXtart terminates.

RUN

Runs a command.

RUN "command"

Command can be any 16-bit or 32-bit application. To run command interpreter 
commands, specify the correct command interpreter as part of the command.
RUN does not wait for the program to complete. Script execution continues 
immediately. This behavior is different from the MS-DOS – based version of KiXtart, 
where the RUN command also terminates the script. If you want to emulate the 
MS-DOS – based version, you must add an EXIT command after the RUN command.

RUN @LDRIVE + "\UPDATE.EXE"
RUN "%COMSPEC% /e:1024 /c DIR C:"

SELECT CASE … ENDSELECT

A SELECT statement is an efficient way to write a series of IF ELSE statements.

SELECT
CASE expression
statement1

....
[CASE expression
statement2

.... ]
ENDSELECT

Examples Action Syntax RemarksActionSyntaxRemarksExamplesActionSyntax



KiXtart 2010  53

A SELECT statement consists of one or more conditions (CASE) each of which is 
followed by one or more statements that are executed only if the condition evaluates to
TRUE. The SELECT statement is processed from top to bottom. If an expression 
evaluates to TRUE, the statements immediately following it are executed, up to the 
next CASE statement.

Only one CASE statement is executed, regardless of how many statements evaluate to 
TRUE.

If expression does not contain any relational operators, the condition is considered to 
be true if it is numeric and if it evaluates to a value other than zero, or if it is 
alphanumeric and it evaluates to a string containing at least one character.
SELECT statements can be nested as many times as memory allows.

SELECT
CASE InGroup("Domain Admins") AND @DAY = 1

? "Whatever…"
CASE InGroup("Office Users")

? "Etc…"
? "Etc…"

CASE 1 ; this is a nice way to provide a default CASE; if all other
; CASEs fail, this one will always be run

? "Hmm, you're not in one of our groups?"
ENDSELECT

SET

On Windows NT/2000/XP, sets environment variables in the environment of the 
current user (HKEY_CURRENT_USER\Environment).

On Windows 9x, sets environment variables in the global Windows environment 
(similar to the functionality offered by WINSET.EXE).

SET "variable=string"

After any change to the environment, KiXtart informs running programs that the 
change was made, prompting them to regenerate their environments. Programs that 
support this feature (such as Program Manager, Task Manager, and Windows 
Explorer) update their environments when they receive the WM_SETTINGCHANGE 
message.

The environment of the current process (KiXtart) is not affected.

Remarks Examples Action SyntaxRemarks



KiXtart 2010

SETL

Sets environment variables in the local environment that you see when you start a 
program from within a KiXtart script.

SETL "variable=string"

This command does not affect the current environment. If you start KiXtart from 
a batch file, any commands in the batch file that are run after KiXtart exits do not see 
changes made by the SET or SETL commands. If you want to run batch files or 
programs that depend on settings set by KiXtart, start them from KiXtart using 
SHELL or RUN.

SETL sets the value of @ERROR.

SETM

On Windows NT/2000/XP, sets environment variables in the environment of the local 
computer 
(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session 
Manager\Environment).

On Windows 9x, sets environment variables in the global Windows environment 
(similar to the functionality offered by WINSET.EXE). 

SETM "variable=string"

On Windows NT/2000/XP, after any change to the environment, KiXtart informs 
running programs that the change was made, prompting them to regenerate their 
environments. Programs that support this feature (such as Program Manager, Task 
Manager, and Windows Explorer) update their environments when they receive the 
WM_SETTINGCHANGE message.

The environment of the current process (KiXtart) is not affected.

SETTIME

Synchronizes the system clock of the local computer with the time on a specified 
source.

SETTIME "source"

Source can be one of the following:

Action Syntax Remarks ActionSyntaxRemarksActionSyntaxRemarks



KiXtart 2010  55

A server name expressed in 
UNC format

KiXtart connects to the server specified to retrieve the 
time.

A domain name KiXtart browses the domain for a server running the 
Time Source service.

"*" KiXtart browses the local domain for any server 
running the Time Source service.

On Windows NT or higher, SETTIME requires the current user to have the ‘Change 
the system time’ privilege.
For more information on running the Windows NT Time Source Service, see 
Knowledge Base article Q131715 (also available on TechNet).

SETTIME "*"
SETTIME "\\MYTIME"
SETTIME "TIMEDOMAIN"

SHELL

Loads and runs a program.

SHELL "command"

Command can be any 16-bit or 32-bit application. To run command interpreter 
commands, specify the correct command interpreter as part of the command.
Script execution is stopped until the program exits.  
If the program you want to run needs to set environment variables (as is the case with 
Smsls.bat, for example), you may need to specify additional environment space by 
using the /E parameter.

SHELL sets the value of @ERROR to the exit code of the program that is run.

SHELL @LDRIVE + "\UPDATE.EXE"
SHELL "%COMSPEC% /e:1024 /c DIR C:"
SHELL "SETW USERNAME=@USERID"
SHELL "CMD.EXE /C COPY " + @LDRIVE + "\FILE.TXT C:\"
SHELL "%COMSPEC% /C COPY Z:\FILE.TXT C:\"
SHELL "C:\WINNT\SYSTEM32\CMD /E:1024 /C " + @LDRIVE + "\SMSLS.BAT"

SLEEP

Halts script execution for the number of seconds specified. Note that you can specify 
fractions of a second.

SLEEP <seconds>

SLEEP 10 ; pause script for 10 seconds

Examples Action Syntax RemarksExamplesActionSyntaxExamples



KiXtart 2010

SLEEP 0.5 ; pause script for half a second

SMALL

Changes the character mode to small (normal) characters.

SMALL

After using SMALL, subsequent screen output is normal. For more information, see 
BIG earlier in this section.

USE

Connect, disconnect or list network connections.

USE LIST [/PERSISTENT]
USE <* | "device" | "resource"> /DELETE [/PERSISTENT]
USE ["device"] <"resource"> [/USER:”user”] [/PASSWORD:”password”] 
[/PERSISTENT]

Use USE "*" /DELETE to delete all current connections except those to a 
NETLOGON share and those to the drive or share from which KiXtart was started.

If the resource name, user name or password contain non-alphanumeric characters 
(such as - or +), please make sure to enclose them in quotation marks.

On Windows NT or higher only, the /USER and /PASSWORD parameters enable 
overriding the security context of the current user.

Check the value of @ERROR to see if USE was successful (a value of 0 indicates 
success).
The "USE *" syntax enables you to redirect the first available drive to a resource. If 
redirection is successful, @RESULT will contain the driveletter of the redirected 
drive.

USE E:    "\\SERVER\PUBLIC" /PERSISTENT

USE * /DELETE

USE E:    "\\SERVER\PUBLIC" /user:Yogi /password:Bear

USE E:    "\\SERVER\PUBLIC"

USE LPT1: "\\SERVER\LASER" /user:testlan\USER1

USE L: /DEL

Action Syntax Remarks ActionSyntaxRemarksExamples



KiXtart 2010  57

USE LIST

USE * @HOMESHR ; connect any drive to user's home share
IF @ERROR = 0
 ? "Connected " + @RESULT + " to home share…"
ENDIF

USE H: @HOMESHR ; connect to user's home share
IF @ERROR = 0
 H: ; 

CD @HOMEDIR ; change directory to user's home directory
ENDIF

WHILE - LOOP

Runs a set of statements as long as an expression is true.

WHILE "expression" 
   statements... 
LOOP

WHILE loops can be nested as many times as memory allows.

Action Syntax Remarks



KiXtart 2010

KiXtart Function Reference
Most functions take one or more string or numeric expressions as parameters. String 
parameters are indicated by double quotation marks around the parameter name. 
Certain functions allow for optional parameters. If you omit these parameters, the 
function uses a default value instead.

Return Values
Most functions return either a string or a numeric value, and can thus be used 
anywhere an expression is expected. Most functions also set the values of @ERROR 
and @SERROR, which allows you to check if the function was successful.

Registry Functions
All registry functions use the following format to specify registry subkeys:
[\\remote_computer_name\][Key\]Subkey

Remote_computer_name can be any valid computer name in UNC format (preceded 
by two backslashes). If you do not specify a remote_computer_name, the program 
defaults to the local registry.

Key can be any of the main registry trees: 
HKEY_LOCAL_MACHINE (HKLM)
HKEY_USERS (HKU)
HKEY_CLASSES_ROOT (HKCR) 
HKEY_CURRENT_USER (HKCU)
HKEY_CURRENT_CONFIG (HKCC)

If you do not specify a root key, KiXtart will use HKEY_CURRENT_USER as the 
default. 

Subkey can be any valid registry subkey. If the name of a subkey contains spaces, 
enclose the entire expression in quotation marks.

The following examples show correct syntax of keys:

"\\VLEERBEER\HKEY_LOCAL_MACHINE\CONTROL"
"HKEY_CURRENT_USER\Program Groups\Games"
"Control Panel\International\Sorting Order"
"HKCU\Program Groups\Games"



KiXtart 2010  59

When gaining access to a remote registry, you can only specify either 
HKEY_LOCAL_MACHINE or HKEY_USERS. Also, if you want to gain access to
a remote registry from Windows 9x, you must enable remote registry access. For more 
information, see the instructions in the Admin\Nettools\Remotreg directory on the 
Windows 9x CD.

KiXtart does not ask for confirmation when registry values are overwritten or when 
subkeys are deleted. Always be very careful when changing the registry, and 
preferrably back up your system before changing registry values.

ABS

Returns the absolute value of a number.

ABS (expression)
Parameter
Expression

Any valid numeric expression. 

Absolute value of a number.

ADDKEY

Adds the specified subkey to the registry.

ADDKEY ("subkey")
Parameter
Subkey

A string that specifies the name of the subkey you want to add to the registry.

0 Subkey added

Error code Function failed

$ReturnCode = AddKey("HKEY_CURRENT_USER\EZReg")
If $ReturnCode = 0
   ? "Key added...."
Endif

Note Caution Action Syntax ReturnsActionSyntaxReturnsExample



KiXtart 2010

ADDPRINTERCONNECTION

Adds a connection to the specified printer for the current user. 

ADDPRINTERCONNECTION ("printer share")

Printer share
The (share)name of the printer to which to connect.

This function is available only on Windows NT or higher, and can be used only to 
connect to printers on a server running under Windows NT or higher.

When Windows NT connects to the printer, it may copy printer driver files to the local 
computer. If the user does not have permission to copy files to the appropriate 
location, ADDPRINTERCONNECTION fails, and @ERROR returns 
ERROR_ACCESS_DENIED. 

0 Printer connection established

Error code Function failed

If ADDPRINTERCONNECTION ("\\vleerbeer\hp laserjet 4") = 0
   ? "Added printer connection...."
Endif

ADDPROGRAMGROUP

Instructs Program Manager to create a new program group.

ADDPROGRAMGROUP ("group name", common group flag)

Group name
Identifies the group window to be added. 

Common group flag
Optional numeric parameter. This parameter is available only on Windows NT or 
higher. Common group flag can have the following values:

0 Creates a personal group.

1 Creates a common group. The current user must have administrative 
privileges, or the function fails.

0 Program group added

Error code Function failed

Action Syntax Parameters RemarksReturnsExampleActionSyntaxParametersReturns



KiXtart 2010  61

If AddProgramGroup("NewGroup", 0) = 0
   ? "NewGroup has created...."
Endif

ADDPROGRAMITEM

Instructs Program Manager to add an icon to the active program group.

ADDPROGRAMITEM ("command line", "name", "icon path", icon index, "default 
directory", minimize, replace, run in own space)

Command line
Specifies the command line required to run the application. This parameter is a 
string containing the name of the executable file for the application. It can also 
include the path of the application and any required parameters. 

Name
Specifies the title that is displayed below the icon in the group window. 

Icon path
Identifies the file name for the icon to display in the group window. This string 
identifies a Windows-based executable file or an icon file. If no icon path is 
specified, Program Manager uses the first icon in the file specified by command 
line if that file is an executable file.

If command line specifies a file that has been associated with a program, Program 
Manager uses the first icon provided in the executable file of that program. 
Association information is obtained from the registry. If command line specifies 
neither an executable file nor an associated program, Program Manager uses a 
default icon. 

Icon index
This parameter is an integer that specifies the index of the icon in the file identified
by the icon path parameter. Program Manager includes five default icons that can 
be used for programs not written for Windows. 

Default directory
Specifies the name of the default (or working) directory. This parameter is a string.

Minimize
Optional numeric parameter. Specifies whether an application window is 
minimized when first displayed. Possible values for this parameter are:

0 Default system setting

1 Minimize

Example Action Syntax Parameters



KiXtart 2010

Replace
Optional numeric parameter. Specifies whether ADDPROGRAMITEM replaces 
an existing program item with the same name. Possible values for this parameter 
are:

0 Adds a new program item without replacing the existing one. This is the
default.

1 Replaces any existing program item.

Run in own space
Optional numeric parameter. Specifies whether the program runs in its own address
space. This parameter applies only to 16-bit Windows applications running on 
Windows NT or higher. This parameter can have the following values:

0 Does not run in separate address space. This is the default.

1 Runs in separate address space.

There is a limit of 50 items that can be added to each program group.

0 Program item added

Error code Function failed

If AddProgramItem("c:\windows\regedit.exe","RegEdit","",0,"c:\",0,0) = 0
   ? "Added program item 'RegEdit' to current group..."
Endif

ASC

Returns the ASCII code of the character specified.

ASC (character)

Character
Character you want to know the ASCII code of. 

Numeric value representing the ASCII code of the character.

$ASCII = Asc( "H" )

ASCAN

Searches an array for an element containing the same value as an expression.
ASCAN (array, expression, start, length, flags)

Remarks Returns Example ActionSyntaxParameterReturnsExampleActionSyntax



KiXtart 2010  63

Array
Name of the array to search. 

Expression
Specifies the expression to search for. 

Start
Optional argument specifying the element number at which the search begins. The 
element number you specify is included in the search.

Length
Optional value specifying the number of elements to scan. If you omit this value, 
the search continues to the last array element.

Flags
Optional value combining one or more flags. Possible values:

Flag (bit) Value Action

0 0 Search for exact match (default).

1 Search for an element containing the search string.

1 0 Return first matching element (default).

1 Return all matching elements.

>=0 ID of the element that matches the expression.

-1 Expression not present in array

$Array = 1,2,3,5,7,11,13
$x = ASCAN($Array, 3)   ; will return '2'

$Array = 'SomeString', 'AnotherString', 'LastString'
$x = ASCAN($Array, 'other', , , 1)   ; will return '1'

$Array = 'SomeString', 'AnotherString', 'Last'
$x = ASCAN($Array, 'String', , , 3)   ; will return an array containing

  ; all matching elements

AT

Places the cursor in the position indicated.

AT (row, column)
Row

Specifies the row at which to position the cursor. 

Column
Specifies the column at which to position the cursor.

Parameters Returns Examples ActionSyntaxParameters



KiXtart 2010

The cursor position is expressed in screen coordinates. A value of 0,0 represents the 
top left corner of the screen.

The AT command is ignored if all output has been redirected to a file using the 
REDIRECTOUTPUT function. 

Nothing.

BACKUPEVENTLOG

Creates a backup of a Windows NT eventlog.

BACKUPEVENTLOG ("eventlog", "backupfile")

Eventlog
String indicating the eventlog to backup. By default, Windows NT supports three 
eventlogs: "Application", "Security" and "System". Optionally, the string can 
include the name of a remote system on which to backup the log.

Backupfile
String indicating the name of the backupfile. Note: the file must not exist.

0 Eventlog backed up.

>0 Errorcode.

BackupEventlog( "Application" , "C:\eventbackups\application.evt" ) 

BackupEventlog( "\\PDC\Application" , "C:\eventbackups\application.evt")

BackupEventlog( "System" , "C:\eventbackups\system.evt") 

BOX

Draws a box.

BOX (top_left_row, top_left_column, bottom_right_row, bottom_right_column, "line 
style")

Top_left_row, top_left_column, bottom_right_row, bottom_right_column
The four corners of the box to be drawn, expressed in screen coordinates. A value 
of 0,0 represents the top left corner of the screen.

Line style

Possible values for line style are:

Remarks Returns Action SyntaxParameterReturnsExamplesActionSyntaxParameters



KiXtart 2010  65

single Single line outline, space as filler

double Double line, space as filler

full Full line, space as filler

grid Single line, cross as filler

You can also create a custom box by using a string value for line style. The string can 
contain as many as 9 characters, which are defined as follows.

This character 
in the string Represents this portion of the box

1st Top-left corner

2nd Top horizontal

3rd Top -right corner

4th Right vertical

5th Bottom -right corner

6th Bottom horizontal

7th Bottom -left corner

8th Left vertical

9th Filler

The BOX command is ignored if all output is redirected to a file (or the console) using
the REDIRECTOUTPUT function. 

Nothing.

BOX (10, 10, 12, 15, "+-+|+-+| ")   ;

produces the following box:
         +---+
         |   |
         +---+

CDBL

Returns an expression that has been converted to a Variant of subtype Double.

CDBL (expression)

Expression
Any valid expression. 

Variant of subtype Double.

Remarks Returns Example ActionSyntaxParameterReturns



KiXtart 2010

CHR

Insert special characters, such as carriage returns, in a string.

CHR (character code)

Character code
A numeric expression representing the character code to insert. 

The string representation of the character code.

$Message  = "Hello " + @USERID + Chr(13) + Chr(10)+ "Welcome to our 
network."

CINT

Returns an expression that has been converted to a Variant of subtype Integer.

CINT (expression)

Expression
Any valid expression. 

Variant of subtype Integer.

CInt differs from the Fix and Int functions, which truncate, rather than round, the 
fractional part of a number. When the fractional part is exactly 0.5, the CInt function 
always rounds it to the nearest even number. For example, 0.5 rounds to 0, and 1.5 
rounds to 2.

CLEAREVENTLOG

Clears a Windows NT eventlog.

CLEAREVENTLOG ("eventlog")

Eventlog
String indicating the eventlog to clear. By default, Windows NT supports three 
eventlogs: "Application", "Security" and "System". Optionally, the string can 
include the name of a remote system on which to clear the log.

0 Eventlog cleared.

>0 Errorcode.

ClearEventlog( "Application" ) 

Action Syntax Parameter ReturnsExampleActionSyntaxParameterReturnsRemarksActionSyntaxParameterReturnsExamples



KiXtart 2010  67

ClearEventlog( "\\PDC\Application" ) 

ClearEventlog( "System" ) 

CLOSE

Closes a file previously opened by the OPEN function.

CLOSE (file handle)

File handle
A numeric expression indicating the file handle of the file to close. Possible values 
range from 1 to 10.

-2 Invalid file handle specified

0 File closed

IF Close(3) 
Beep
? "Error closing file!"

ENDIF

COMPAREFILETIMES

Compares the date and time of two files.

COMPAREFILETIMES ("file1", "file2")

File1
Identifies the first file you want to compare.

File2
Identifies the second file you want to compare.

-3 File2 could not be opened (see @ERROR for more information).

-2 File1 could not be opened (see @ERROR for more information).

-1 File1 is older than file2.

0 File1 and file2 have the same date and time.

1 File1 is more recent than file2.

$Result = CompareFileTimes(@LDRIVE + "\USER.INI", "C:\WINDOWS\USER.INI")
IF $Result = 1 OR $Result = -3

COPY @LDRIVE + "\USER.INI" "C:\WINDOWS\USER.INI"

Action Syntax Parameter ReturnsExampleActionSyntaxParameterReturnsExample



KiXtart 2010

ENDIF

CREATEOBJECT

CreateObject launches (if necessary) the OLE Automation server and returns a handle 
through which an OLE Automation object can be manipulated.

CREATEOBJECT ("serverclassname.typename")

ServerClassName
The name of the application providing the object.

TypeName
The type or class of the object to create.

If the function succeeds it returns the handle to the object. If the function fails, it 
returns 0.
$ObjectHandle = CreateObject("WScript.Shell")

CSTR

Returns an expression that has been converted to a Variant of subtype String.

CSTR (expression)

Expression
Any valid expression. 

Variant of subtype String.

DECTOHEX

Returns the hexadecimal representation of a decimal value.

DECTOHEX (Decimal value)

Decimal value
The value you want to have the hexadecimal representation of.

A string representing the hexadecimal value of the input value.

$Result = DecToHex(123)

Action Syntax Parameters ReturnsExampleActionSyntaxParameterReturnsActionSyntaxParameterReturnsExample



KiXtart 2010  69

DELKEY

Deletes the specified subkey from the registry.

DELKEY ("subkey")

Subkey
A string that specifies the name of the subkey you want to delete. 

This call fails if any subkeys exist within the specified subkey. Use DELTREE if you 
want to delete a subkey that contains subkeys.

0 Subkey deleted

Error code Function failed

$ReturnCode = DelKey("HKEY_CURRENT_USER\EZReg")
If $ReturnCode = 0
   ? "Key deleted...."
Endif

DELPRINTERCONNECTION

Deletes a connection to a printer that was established by using 
ADDPRINTERCONNECTION.

DELPRINTERCONNECTION ("printer name")

Printer name
A string that specifies the name of the printer connection to delete. 

This function is only available on Windows NT or higher.
The DELPRINTERCONNECTION function does not delete any printer driver files 
that were copied from the server on which the printer resides when the printer 
connection was established.

0 Printer connection deleted

Error code Function failed

If DelPrinterConnection ("hplaser4") = 0
   ? "Deleted printer connection...."
Endif

Action Syntax Parameter RemarksReturnsExampleActionSyntaxParametersRemarksReturnsExample



KiXtart 2010

DELPROGRAMGROUP

Instructs Program Manager to delete an existing program group. 

DELPROGRAMGROUP ("group name", common group flag)

Group name
Identifies the group to be deleted.

Common group flag
Optional numeric parameter. This parameter is available only on Windows NT or 
higher. Common group flag can have the following values:

0 Deletes a personal group.

1 Deletes a common group. The current user must have administrative privileges, 
otherwise the function fails.

When this function runs, no confirmation is asked nor warning given.

0 Program group deleted

Error code Function failed

If DelProgramGroup("NewGroup", 0) = 0
   ? "NewGroup deleted...."
Endif

DELPROGRAMITEM

Instructs Program Manager to delete an item from the active program group.

DELPROGRAMITEM ("item name")

Item name
Specifies the item to be deleted from the active program group.

0 Program item deleted

Error code Function failed

If DelProgramItem("Whatever") = 0
   ? "ProgramItem 'Whatever' deleted from the current group...."
Endif

Action Syntax Parameters RemarksReturnsExampleActionSyntaxParameterReturnsExample



KiXtart 2010  71

DELTREE

Deletes a subkey from the registry, including all the subkeys contained in the specified 
subkey.

DELTREE ("subkey")

Subkey
Specifies the subkey to be deleted from the registry.

When this function runs, no confirmation is asked nor warning given.

0 Subkey deleted

Error code Function failed

$ReturnCode = DelTree("HKEY_CURRENT_USER\EZReg")
If $ReturnCode = 0
   ? "Key deleted...."
Endif

DELVALUE

Deletes a value entry from the registry.

DELVALUE ("subkey", "entry")

Subkey
A string that specifies the name of the subkey from which you want to delete an 
entry. 

Entry
A string that specifies the name of the entry you want to delete.

0 Value entry deleted

Error code Function failed

$ReturnCode  =DelValue("HKEY_CURRENT_USER\EZReg", "Test")
If $ReturnCode = 0
   ? "Value deleted...."
Endif

Action Syntax Parameter RemarksReturnsExampleActionSyntaxParameterReturnsExample



KiXtart 2010

DIR

Dir can be used to enumerate the files in a directory. Dir returns a string representing 
the name of a file, directory, or folder that matches a specified pattern. To retrieve 
subsequent entries in a directory, specify an empty string ("") as the path.

DIR ("path", index)

Path
Optional string that specifies a file name — may include directory or folder, and 
drive. If  path is empty (""), Dir will return the next file of the previously opened 
enumeration handle. Wildcards (‘*’ and ‘?’) are supported.

Index
Optional number indicating which enumeration handle to use. The Dir function can
enumerate two directories at the same time. To open the second enumeration 
handle, specify 1 for the index.

Returns a string representing the name of a file, directory, or folder that matches a 
specified pattern. An empty string ("") is returned if path is not found or to indicate 
that the end of the current enumeration was reached. Dir also sets the value of 
@ERROR : 
0 Dir successful.

Error code Function failed.

$FileName = Dir("C:\TEMP\*.*")
While $FileName <> "" and @ERROR = 0

? $FileName
$FileName = Dir() ; retrieve next file

Loop

ENUMGROUP

Enumerates all groups of which the current user is a member.

ENUMGROUP (Index)

Index
A numeric value representing the group whose name you want to discover (where 0
is the first subkey).

String Group name

Error code Function failed

$Index = 0
DO

Action Syntax Parameter ReturnsExampleActionSyntaxParameterReturnsExample



KiXtart 2010  73

    $Group = ENUMGROUP($Index)
    $Index = $Index + 1
UNTIL Len($Group) = 0

ENUMIPINFO

Enables enumeration of TCP/IP information of all network adapters of the local 
system.

ENUMIPINFO (index, type, mode)

Index
A numeric value representing the IP information group you want to discover 
(where 0 is the first group).

Type
Optional parameter identifying the type of information you want to enumerate.

0 IP address

1 Subnet mask

2 Adapter description

3 Default gateway

Mode
Optional parameter indicating whether or not EnumIPInfo should rediscover IP 
information from the system. If this parameter is omitted, EnumIPInfo retrieves IP 
information from the system during the first call, caches the information and re-
uses the information on subsequent calls in the current KiXtart session. Possible 
values:

0 Re-use cached information.

1 Retrieve current IP information from the system.

A string representing the requested information.

This function is available on Windows XP, Windows 2000 and Windows 9x, but not 
on Windows NT. Furthermore, this function relies on a correct installation of the IP 
Helper API which is installed as part of Microsoft Internet Explorer 5.0 and higher. 
Note that there is a known issue with installing the required DLLs on Windows 9x. 
Full details on this issue can be found in the following KnowledgeBase article:  
http://support.microsoft.com/support/kb/articles/Q234/5/73.ASP.

$Result = EnumIPInfo()

Action Syntax Parameter ReturnsRemarksExample

http://support.microsoft.com/support/kb/articles/Q234/5/73.ASP


KiXtart 2010

ENUMKEY

Lists the names of the subkeys contained in a registry key or subkey.

ENUMKEY ("subkey", index)

Subkey
Specifies the key or subkey for which you want to enumerate the subkeys.

Index
A numeric value representing the position of the subkey whose name you want to 
discover. Zero (0) represents the first subkey in the key.

0 Function returns a string representing the subkey in the specified key

Error code Function failed

259 Subkey does not exist

$Index = 0
:Loop1
$KeyName = ENUMKEY("HKEY_CURRENT_USER\Console\ ", $Index)
If @ERROR = 0
 ? "Name found: $KeyName"

$Index = $Index + 1
  goto Loop1
Endif

ENUMLOCALGROUP

Enumerates local groupmembership of the current user on a trusted domain or a 
member server.

ENUMLOCALGROUP (index, "source")

Index
A numeric value representing the group whose name you want to discover (where 0
is the first subkey).

Source
String value representing the server or domain whose local groups you want to 
query. 

Local group membership in the logon domain can be enumerated using 
ENUMGROUP. EnumLocalGroup is intended for local groups in other domains or on 
member servers.

String Local group name

Action Syntax Parameters ReturnsExampleActionSyntaxParameterRemarksReturns



KiXtart 2010  75

Error code Function failed

$Index = 0
DO
    $Group = ENUMLOCALGROUP($Index)
    $Index = $Index + 1
UNTIL Len($Group) = 0

- Or -
$Index = 0
DO
    $Group = ENUMLOCALGROUP($Index, "\\MyServer")
    $Index = $Index + 1
UNTIL Len($Group) = 0

ENUMVALUE

Lists the names of the registry entries contained in a specific key or subkey.

ENUMVALUE ("subkey", index)

Subkey
Specifies the key or subkey for which you want to enumerate the value entries.

Index
A numeric value representing the position of the entry whose name you want to 
discover. Zero (0) represents the first entry in the subkey.

0 Function returns a string representing the entry in the specified key or 
subkey

Error code Function failed

259 Entry does not exist

$Index = 0
:Loop1
$ValueName = ENUMVALUE("HKEY_CURRENT_USER\Console\Configuration", 
$Index)
If @ERROR = 0
 ? "Name found: $ValueName"

$Index = $Index + 1
  goto Loop1
Endif

Example Action Syntax ParametersReturnsExample



KiXtart 2010

EXECUTE

Executes a piece of KiXtart script code.

EXECUTE (script code)

Script code
A string expression representing the code to execute.

The exitcode of the executed script.

$Rc = Execute( '? "This is a demo of the Execute() function"' )

$Rc = Execute( '$$X = 10' ) ; note the extra '$'

$Rc = Execute( '$$X = ' + @USERID )

EXIST

Checks for the existence of one or more files.

EXIST ("file name")

File name
Identifies the file(s) you want to locate. 

Supports wildcards.

0 File not found

1 File found

IF EXIST (@LDRIVE + "\users.txt")
DISPLAY @LDRIVE + "\users.txt"

ENDIF
IF EXIST (@LDRIVE + "\*.INI")

; Etc, etc.
ENDIF

EXISTKEY

Checks for the existence of a registry subkey.
EXISTKEY is only supported for backward compatibility. New scripts should use the 
new KEYEXIST function.

Action Syntax Parameter ReturnsExamplesActionSyntaxParametersRemarksReturnsExamplesActionRemarks



KiXtart 2010  77

EXPANDENVIRONMENTVARS

Expands any environment variables inside a string to the corresponding plain text 
value.

EXPANDENVIRONMENTVARS ("string")

String
The string you want to expand. 

The expanded string.

$Value = ReadValue("HKLM\System\CurrentControlset\Control\Windows", 
"SystemDirectory" )

? ExpandEnvironmentVars( $Value )

FIX

Fix removes the fractional part of number and returns the resulting integer value.

Note that if the number is negative, Fix returns the first negative integer greater than 
or equal to number. For example, Fix converts -6.3 to -6.

FIX (expression)

Expression
Any valid numeric expression. 

Variant of subtype Integer.

FORMATNUMBER

Returns an expression formatted as a number.

FORMATNUMBER (expression, decimalplaces, leadingdigit, parentheses, group)

Expression
Any valid numeric expression. 

DecimalPlaces
Optional numeric value indicating how many places to the right of the decimal are 
displayed. Default value is -1, which indicates that the computer's regional settings 
are used.

Action Syntax Parameter ReturnsExampleActionSyntaxParameterReturnsActionSyntaxParameter



KiXtart 2010

LeadingDigit
Optional tri-state constant that indicates whether or not a leading zero is displayed 
for fractional values. See below for values. 

Parentheses
Optional tri-state constant that indicates whether or not to place negative values 
within parentheses. See below for values. 

Group
Optional tri-state constant that indicates whether or not numbers are grouped using 
the group delimiter specified in the control panel. See below for values. 

Possible values for the tri-state constants:
-1 True.

0 False.

-2 Use the setting from the computer's regional settings.

Formatted number.

FREEFILEHANDLE

Returns the first available file handle.

FREEFILEHANDLE ( )

None

0 No file handle available

>0 File handle

$Handle = FreeFileHandle()
IF $Handle > 0
   IF Open($Handle, @LDRIVE + "\CONFIG\SETTINGS.INI")  = 0
      ………
   ENDIF
ENDIF

GETCOMMANDLINE

Returns the commandline used to start KiXtart.

GETCOMMANDLINE (Mode)

Returns Action Syntax ParametersReturnsExampleActionSyntax



KiXtart 2010  79

Mode
Optional integer parameter indicating how the commandline should be returned. 
Possible values:

0 Return commandline as a single, unprocessed, string (default).

1 Return commandline as an array of strings.

String or array containing commandline.

$CL = GetCommandLine(1)
FOR EACH $Arg in $CL
    ? $Arg
NEXT

GETDISKSPACE

Returns the number of kilobytes (KB) available to the current user on a specific drive.

GETDISKSPACE ("drive")

Drive
String that specifies a directory on the disk of interest. On Windows NT and on 
Windows 95 OSR2 and later versions, this string can be a UNC name. If this 
parameter is a UNC name, you must follow it with an additional backslash. For 
example, you would specify \\MyServer\MyShare as \\MyServer\MyShare\. 

If Drive is an empty string, GetDiskSpace obtains information about the disk that 
contains the current directory. 

On Windows NT and on Windows 95 OSR2 and later versions, Drive does not 
have to specify the root directory on a disk. On these platforms, the function 
accepts any directory on a disk.

A number representing the number of kilobytes (KB) available to the current user on 
the drive specified.
On Windows 95 OSR1 and earlier versions, the function can only return correct values
for volumes that are smaller than 2 gigabytes in size. On Windows NT and Windows 
95 OSR2 and later versions, the function always returns correct values, regardless of 
the size of the volume.

$Result = GetDiskSpace( "C:\" )

$Result = GetDiskSpace( "X:\MARKETING" )

Parameters ReturnsExamples Action SyntaxParameterReturnsRemarksExamples



KiXtart 2010

GETFILEATTR

Returns the attributes of a file.

GETFILEATTR ("file name")

File name
Identifies the file for which you want to retrieve the attributes.

Zero to indicate the function failed. If the function failed, check @ERROR for details 
on the error. Otherwise, the return value represents the attributes of the file. The 
attributes can be one or more of the following values: 
1 Read only The file or directory is read-only. Applications can read the 

file but cannot write to it or delete it. In the case of a directory,
applications cannot delete it.

2 Hidden The file or directory is hidden. It is not included in an ordinary
directory listing.

4 System The file or directory is part of, or is used exclusively by, the 
operating system.

16 Directory The filename identifies a directory.

32 Archive The file or directory is an archive file or directory. 
Applications use this attribute to mark files for backup or 
removal.

64 Encrypted The file or directory is encrypted. For a file, this means that all 
data streams are encrypted. For a directory, this means that 
encryption is the default for newly created files and 
subdirectories.

128 Normal The file or directory has no other attributes set. This attribute 
is valid only if used alone.

256 Temporary The file is being used for temporary storage. File systems 
attempt to keep all of the data in memory for quicker access 
rather than flushing the data back to mass storage. A 
temporary file should be deleted by the application as soon as 
it is no longer needed.

512 Sparse file The file is a sparse file.

1024 Reparse point The file has an associated reparse point.

2048 Compressed The file or directory is compressed. For a file, this means that 
all of the data in the file is compressed. For a directory, this 
means that compression is the default for newly created files 
and subdirectories.

4096 Offline The data of the file is not immediately available. Indicates that 
the file data has been physically moved to offline storage.

$Result = GetFileAttr(@LDRIVE + "\Kix32.exe")
IF GetFileAttr( "C:\TEMP" ) & 16 ; note the use of the ‘&’ operator

Action Syntax Parameter ReturnsExample



KiXtart 2010  81

; to check just bit 4
   ? "C:\temp is a directory !"
ENDIF

GETFILESIZE

Returns the size of a file in bytes.

GETFILESIZE ("file name")

File name
Identifies the file for which you want to retrieve the size.

Size of the file in bytes.
The maximum size of files that GetFileSize can correctly report the size of is 
2,147,483,647 bytes.

$Result = GetFileSize(@LDRIVE + "\Kix32.exe")

GETFILETIME

Returns the date and time information of a file.

GETFILETIME ("file name", Mode)

File name
Identifies the file for which you want to retrieve the date and time information.

Time
Optional integer parameter indicating which date/time information GetFileTime 
should return. Possible values:

0 Return last write time (default).

1 Return creation time.

2 Return last access time.

Mode
Optional integer parameter indicating if and how the returned time should be 
adjusted to daylight saving time. Possible values:

0 Adjust time using current daylight saving time (default).

1 Adjust time using daylight saving time of stored time.

2 Do not adjust time (return UTC).

Action Syntax Parameter ReturnsRemarksExampleActionSyntaxParameter



KiXtart 2010

A string representing the date and time of the file in the format "YYYY/MM/DD 
HH:MM:SS".

$Result = GetFileTime(@LDRIVE + "\Kix32.exe")

GETFILEVERSION

Returns a version information string of a file.

GETFILEVERSION ("file name","versionfield")

File name
Identifies the file for which you want to get the version string.

Versionfield
Optional parameter identifying the specific version information field that should be
retrieved. By default, the FileVersion field is returned. Possible values for this field
are : 

BinFileVersion Returns a string representation of the binary file version 
information (e.g.: "4.22.0.0").

BinProductVersion Returns a string representation of the binary product version 
information (e.g.: "4.22.0.0").

Comments This field contains any additional information that should be 
displayed for diagnostic purposes.

CompanyName This field identifies the company that produced the file. For 
example, "Microsoft Corporation" or "Standard Microsystems
Corporation, Inc." 

FileDescription This field describes the file in such a way that it can be 
presented to users. This string may be presented in a list box 
when the user is choosing files to install. For example, 
"Keyboard driver for AT-style keyboards" or "Microsoft 
Word for Windows". 

FileVersion This field member identifies the version of this file. For 
example, "3.00A" or "5.00.RC2". 

InternalName This field identifies the file's internal name, if one exists. For 
example, this string could contain the module name for a 
dynamic-link library (DLL), a virtual device name for a 

Returns Example Action SyntaxParameter



KiXtart 2010  83

Windows virtual device, or a device name for an MS-DOS 
device driver. 

Language Full English name of the language of the file specified in the 
format defined by  ISO Standard 639. (example : "0413Dutch
(Standard)"). 

LegalCopyright This field describes all copyright notices, trademarks, and 
registered trademarks that apply to the file. This should 
include the full text of all notices, legal symbols, copyright 
dates, trademark numbers, and so on. In English, this string 
should be in the format "Copyright Microsoft Corp. 1990–
1994". 

LegalTrademarks This field describes all trademarks and registered trademarks 
that apply to the file. This should include the full text of all 
notices, legal symbols, trademark numbers, and so on. In 
English, this string should be in the format "Windows is a 
trademark of Microsoft Corporation". 

OriginalFilename This field identifies the original name of the file, not 
including a path. This enables an application to determine 
whether a file has been renamed by a user. This name may not
be MS-DOS 8.3-format if the file is specific to a non-FAT file
system. 

PrivateBuild This field describes by whom, where, and why this private 
version of the file was built. For example, "Built by OSCAR 
on \OSCAR2". 

ProductName This field identifies the name of the product with which this 
file is distributed. For example, this string could be 
"Microsoft Windows". 

ProductVersion This field identifies the version of the product with which this
file is distributed. For example, "3.00A" or "5.00.RC2".

SpecialBuild This field describes how this version of the file differs from 
the normal version.  For example, "Private build for Olivetti 
solving mouse problems on M250 and M250E computers".



KiXtart 2010

A string representing the file version field.
The information returned by this function is the same as the version information 
displayed in Windows Explorer.
This function applies only to 32-bit Windows – based executable files.

$Result = GetFileVersion(@LDRIVE + "\Kix32.exe")

$Result = GetFileVersion(@LDRIVE + "\Kix32.exe", "ProductVersion" )

GETOBJECT

GetObject gets an object either from a file stored on disk and returns a handle to the 
object.

GETOBJECT ("objectname" )

ObjectName
Full path and name of the file containing the object to retrieve. If pathname is 
omitted, class is required.

If the function succeeds it returns the handle to the object. If the function fails, it 
returns 0, and @ERROR will be set to a relevant errorcode. 
$ObjectHandle = GetObject("LDAP://localhost")

IIF

Returns one of two values depending on the value of a logical expression.

IIF(expression, returnvalue1, returnvalue2  )

Expression
Specifies the logical expression that IIF( ) evaluates.

ReturnValue1
If expression evaluates to true, ReturnValue1 is returned by IIF.

ReturnValue2
If expression evaluates to false, ReturnValue2 is returned by IIF.

ReturnValue1 or ReturnValue2, depending on the expression. 
FOR EACH $Element IN $Array

$Total = $Total + IIF($Element = "SomeValue", 10, 99)
NEXT

Returns Remarks Example ActionSyntaxParametersReturnsExampleActionSyntaxParametersReturnsExample



KiXtart 2010  85

INGROUP

Checks whether the current user is a member of one or more groups.

INGROUP ("group name" [<,> "group name 2"], Mode)

Group name1, group name 2, group name …
Identifies the group(s) in which to check the user's membership. Multiple group 
names may be passed as arguments. Alternatively, you may specify a single, one-
dimensional, array of which the element(s) are the names of one or more groups to 
test.

Mode
Optional integer parameter indicating whether or not Ingroup checks for 
groupmembership of one or all groups in the list (default = 0). Possible values:

0 Ingroup checks for membership of ONE of the groups in the list (default).

1 Ingroup checks for membership of ALL of the groups in the list.

INGROUP can be used to check for group membership of groups that exist on the 
domain or server where the user is logged on, or to check for group membership of 
groups on a specific domain or server.

When checking for a local group, INGROUP identifies that the user is indirectly a 
member of the group by virtue of being a member of a global group which, in turn, is a
member of the local group.

If you want to check for membership in a group on a specific domain or server, use the
following format:

"OtherDomain\group"

– Or –

"\\SomeServer\group"

On Windows 9x clients, INGROUP works on local groups only if the KiXtart RPC 
service is running.

0 The user is not a member of any of the groups specified.

1 The user is a member of one or more groups.

IF INGROUP("Domain Users") 
DISPLAY "z:\users.txt"

ENDIF

IF INGROUP("Developers", "Testers") = 1
? "Member of Developers OR Testers group"

ENDIF

Action Syntax Parameter RemarksReturnsExample



KiXtart 2010

IF INGROUP("Developers", "Testers", 1) = 1
? "Member of Developers AND Testers group"

ENDIF

$Array = "Developers", "Testers"
IF INGROUP($Array, 1) = 1

? "Member of Developers AND Testers group"
ENDIF

IF INGROUP("\\" + @WKSTA + "\Developers") = 1
? "Member of Developers on local system"

ENDIF

INSTR

Searches a string for the presence of a second string.

INSTR ("string1", "string2")

String1
The string to search in.

String2
The string to search for.

? Offset of the first character of string2 found in string1, counted from the 
beginning of string1

0 String2 not present in string1

$x = INSTR(@DOMAIN, "TEST")   ; check if domain contains the string 
"TEST"

INSTRREV

Searches a string for the presence of a second string. The search is started from the end
of the source string. Note that the offset returned is counted from the beginning of the 
source string.

INSTRREV ("string1", "string2")

String1
The string to search in.

String2
The string to search for.

Action Syntax Parameters ReturnsExampleActionSyntaxParametersReturns



KiXtart 2010  87

? Offset of the first character of string2 found in string1, counted from the 
beginning of string1

0 String2 not present in string1

$x = INSTRREV(@CURDIR, "\")   ; find last backslash in @CURDIR

INT

Int removes the fractional part of number and returns the resulting integer value.

Note that if the number is negative, Int returns the first negative integer less than or 
equal to number. For example, Int converts -6.3 to -7.

INT (expression)

Expression
Any valid numeric expression. 

Variant of subtype Integer.

ISDECLARED

Returns a Boolean value indicating whether a variable has been declared.

ISDECLARED (variable)

Variable
Required. Name of the variable to check.

A boolean.

If IsDeclared( $MyVar )
….

EndIf

JOIN

Returns a string created by joining a number of substrings contained in an array.

JOIN (array, "delimiter", count)

Array
Required. One-dimensional array containing substrings to be joined.

Example Action Syntax ParameterReturnsActionSyntaxParameterReturnsExampleActionSyntaxParameter



KiXtart 2010

Delimiter 
Optional. String character used to separate the substrings in the returned string. If 
omitted, the space character (" ") is used. If delimiter is a zero-length string (""), all
items in the list are concatenated with no delimiters.

Count 
Optional. Number of array elements to join. 

A string.

$Myarray = "aaa", "bbb", "ccc"

$String = Join( $Myarray, "=" ) ; $string now contains "aaa=bbb=ccc"

$String = Join( $Myarray, "=", 2 ) ; $string now contains "aaa=bbb"

KBHIT

Checks the console for keyboard input.

KBHIT ()

<>0 Keystroke waiting in keyboard buffer

0 No keystroke in keyboard buffer.

IF KbHit()
   Get $x   ; get the keystroke from the buffer
ENDIF

KEYEXIST

Checks for the existence of a registry subkey.

KEYEXIST ("subkey")

Subkey
Identifies the subkey you want to locate. 

KEYEXIST is a replacement to the EXISTKEY function found in previous versions 
of KiXtart. While functionally equivalent, the Return Codes are now inverted, 
resulting in behavior similar to the EXIST function.

0 Subkey not  found

1 Subkey found

$ReturnCode = KeyExist("HKEY_CURRENT_USER\Console\Configuration")

Returns Example Action SyntaxReturnsExampleActionSyntaxParameterRemarksReturnsExample



KiXtart 2010  89

If $ReturnCode
   ? "Key exists...."
Endif

LCASE

Returns a string in lowercase.

LCASE ("string")

String
The string you want to change to lowercase.

The input string in lowercase.

$x = LCASE(@USERID)

LEFT

Returns a specified number of characters from the left side of a string.

LEFT ("string", length)

String
String expression from which the leftmost characters are returned.

Length
Numeric expression indicating how many characters to return. If 0, a zero-length 
string is returned. If greater than or equal to the number of characters in string, the 
entire string is returned. Specifying a negative value will cause Left to return the 
number of characters equal to the total length of the string minus the value 
specified.

The substring requested.

$x = LEFT(@USERID, 2)   ; get the first 2 chars of the userid

LEN

Returns the length of a string.

LEN ("string")

String
The string whose length you want to discover.

The number of characters contained in the specified string.

Action Syntax Parameters ReturnsExampleActionSyntaxParametersReturnsExampleActionSyntaxParameterReturns



KiXtart 2010

$x = LEN(@USERID)

LOADHIVE

Creates a subkey under HKEY_USERS or HKEY_LOCAL_MACHINE and stores 
registration information from a specified file into that subkey. This registration 
information is in the form of a hive. A hive is a discrete body of keys, subkeys, and 
values that is rooted at the top of the registry hierarchy. A hive is backed by a single 
file and .LOG file.

LOADHIVE ("key", "file name")

Key
The key you want to load the information in. This key must reside under 
HKEY_LOCAL_MACHINE or HKEY_USERS.

File name
Identifies the file you want to load the information from. This file specified needs 
to be a legal registry hive (created by SAVEKEY, or from REGEDT32.EXE).

On Windows NT or higher, using LOADHIVE requires Backup and Restore 
privileges.

0 Hive loaded

Error code Function failed

$ReturnCode = LoadHive("HKEY_USERS\EZReg", "c:\temp\tst.reg")
If $ReturnCode = 0
   ? "Hive loaded...."
Endif

LOADKEY

Loads a registry key (including its subkeys and values) from a file.

LOADKEY ("subkey", "file name")

Subkey
The subkey in which you want to load the information. This subkey must exist for 
the call to be successful.

File name
Identifies the file from which to import the information. This file must be a valid 
registry hive file created by using the SAVEKEY function, or by using a registry 
editor.

Example Action Syntax ParametersRemarksReturnsExampleActionSyntaxParameters



KiXtart 2010  91

On Windows NT or higher, using LOADKEY requires Backup and Restore 
privileges.

LOADKEY imports information into the registry and overwrites any existing subkey. 
This replaces all the subkeys and values that may already exist in the subkey you are 
loading. Any existing values and subkeys are lost.

0 Subkey loaded

Error code Function failed

$ReturnCode = LoadKey("HKEY_CURRENT_USER\KiXtart", "c:\temp\tst.reg")
If $ReturnCode = 0
   ? "Key loaded...."
Endif

LOGEVENT

Logs an event in the Windows NT event log.

LOGEVENT (type, ID, message, target, source)

Type 
Number representing the type of the event. Possible values : 

0 SUCCESS

1 ERROR

2 WARNING

4 INFORMATION

8 AUDIT_SUCCESS

16 AUDIT_FAILURE

ID
Number representing the event that occurred.

Message
Message text of the event. Note that the length of the message is limited to 32000 
characters.

Target
Optional parameter representing the UNC name of the system where the event 
should be logged. By default, all events are logged on the local system.

Source
Optional parameter representing the source of the event. If this parameter is not 
specified, Kixtart will assume the KIX32.EXE as the source of the event.

Remarks Caution Returns Example ActionSyntaxParameterReturns



KiXtart 2010

0 Event logged

Error code Function failed

This function is only available on clients running Windows NT or higher.

$RC = LogEvent( 0 , 1 , "Logon script completed successfully" , "", 
"MyEvent" )
$RC = LogEvent( 0 , 1 , "Logon script completed successfully")
$RC = LogEvent( 1 , 1 , "Logon script failed!" , @LSERVER )

LOGOFF

Logs the current user off and ends the Windows session.

LOGOFF (force)

Force 
During a logoff operation, applications that are shut down are allowed a specific 
amount of time to respond to the logoff request. If the time expires, Windows 
displays a dialog box that allows the user to forcibly shut down the application, to 
retry the logoff, or to cancel the logoff request. If the Force value is true (i.e. : non-
zero), Windows always forces applications to close and does not display the dialog 
box.

0 Windows does not force applications to close.

1 Windows always forces applications to close and does not display the 
dialog box.

0 User logged off

Error code Function failed

$RC = LogOff(0)

LTRIM

Strips leading spaces from an input string and returns the result.

LTRIM ("string")

String
The string from which to strip leading spaces.

The input string without leading spaces.

$x = LTRIM(SUBSTR(@IPADDRESS0, 1, 3));   192

Remarks Example Action SyntaxParameterReturnsExampleActionSyntaxParameterReturnsExample



KiXtart 2010  93

MEMORYSIZE

Returns memory statistics, in Megabytes.

MEMORYSIZE (type)

Type
Optional number, indicating the type of memory you want statistics on. Possible 
values: 

0 Total physical memory (default)

1 Available physical memory

2 Total size of pagefile

3 Available space in pagefile

The amount of memory, in Megabytes.

$x = MemorySize()

MESSAGEBOX

Displays a standard dialog box in Windows.

MESSAGEBOX ("message", "title", style, time-out)

Message
The message to display in the dialog box.

Title
The title of the dialog box.

Style
Optional numeric expression that is the sum of values specifying the number and 
type of buttons to display, the icon style to use, the identity of the default button, 
and the modality. The following table illustrates the values used and the meaning of
each group of values.

Buttons to display

Value Meaning

0 Display OK button only.

1 Display OK and Cancel buttons.

2 Display Abort, Retry, and Ignore buttons.

3 Display Yes, No, and Cancel buttons.

Action Syntax Parameter ReturnsExampleActionSyntaxParameters



KiXtart 2010

4 Display Yes and No buttons.

5 Display Retry and Cancel buttons.

Icon to display

Value Meaning

16 Stop symbol

32 Question mark

48 Exclamation mark

64 Information symbol

Default button

Value Meaning

0 First button is default.

256 Second button is default.

512 Third button is default.

Modality

Value Meaning

0 Application-modal. The user must respond to the message box before 
continuing work in the application.

4096 System-modal. All applications are suspended until the user responds to
the message box.

When adding numbers to create a final value for the argument type, use only one 
number from each group. If style is omitted, a default value of 0 is assumed.

Time-out
Optional numeric expression representing the number of seconds after which to 
close the dialog box.

The time-out feature only works if the MESSAGEBOX dialog box is the active 
window for the duration of the time-out. If the user switches away from KiXtart and 
activates another application, the MESSAGEBOX dialog box is not closed.

MESSAGEBOX displays a maximum of 1024 characters in application-modal dialog 
boxes. Longer messages are truncated after the 1024th character. Message strings 
longer than 255 characters with no intervening spaces are truncated after the 255th 
character. For system-modal dialog boxes, the number of characters you can display 
depends on screen resolution and number of lines in the message.

MESSAGEBOX breaks lines automatically at the right edge of the dialog box. If you 
want to set line breaks yourself, place a linefeed (ANSI character 10) before the first 
character of the text that is to begin each new line.

Note Remarks



KiXtart 2010  95

The value returned by MESSAGEBOX indicates which button was selected, as shown
in the following table.

Value Meaning

-1 User did not respond to the dialog box within the specified time-out period.

1 OK button selected.

2 Cancel button selected.

3 Abort button selected.

4 Retry button selected.

5 Ignore button selected.

6 Yes button selected.

7 No button selected.

If the dialog box contains a Cancel button, pressing ESC has the same effect as 
choosing Cancel.

$Selection = MessageBox("Do you want to continue ?", "KiXtart", 36)
If $Selection = 6
   ? "Yes selected, continuing...."
Endif

OPEN

Opens a text file.

OPEN (file handle, "file name", mode)

File handle
A numeric expression indicating the file handle of the file to open. Possible values 
range from 1 to 10.

File name
A string expression indicating the path and name of the ASCII file to open.

Mode
Optional parameter that indicates what should happen if the file does not exist. This
parameter can have the following values:

0 If the file does not exist, OPEN fails with return code 2 
(default).

1 If the file does not exist, OPEN will create a new file.

2 Opens the file for read access (default).

4 Opens the file for write access.

Returns Example Action SyntaxParameters



KiXtart 2010

These values are cumulative. So if you want to open a file for write access, and create 
it if it does not yet exist, you should specify 5. Notice however that a file can not be 
opened for read and write access at the same time.

OPEN opens the ASCII file specified by file name, for the internal buffer indicated by 
file handle. KiXtart supports a maximum of ten open files, so file handle must be 
within the range of 1 to 10.

-3 File handle already in use

-2 Invalid file handle specified

-1 Invalid file name specified

0 File opened successfully

>0 System error

IF Open(3, @LDRIVE + "\CONFIG\SETTINGS.INI")  = 0
   $x = ReadLine(3)
   WHILE @ERROR = 0
      ? "Line read: [" + $x + "]"
      $x = ReadLine(3)
   LOOP
ENDIF

READLINE

Reads a line from a file.

READLINE (file handle)

File handle
A numeric expression indicating the file handle of the file to open. Possible values 
range from 1 to 10.

READLINE reads a string ending in a carriage return. If successful, the function 
returns the string without the carriage return.

In order to improve read performance, the first READLINE on a file reads the entire 
file into memory, and subsequent READLINE commands read lines from memory.

-4 File not open for reading

-3 File handle not open

-2 Invalid file handle specified

Note Remarks Returns Example ActionSyntaxParameterRemarksReturns



KiXtart 2010  97

-1 End of file

0 Line read successfully

IF Open(3, @LDRIVE + "\CONFIG\SETTINGS.INI")  = 0
   $x = ReadLine(3)
   WHILE @ERROR = 0
      ? "Line read: [" + $x + "]"
      $x = ReadLine(3)
   LOOP
   Close (3)
ELSE
   BEEP
   ? "Config file not opened, error code: [" + @ERROR + "]"
ENDIF

READPROFILESTRING

Retrieves a string from an initialization file.

READPROFILESTRING ("file name", "section", "key")

File name
A string that names the initialization file. If this parameter does not include a full 
path, Windows searches for the file in the Windows directory. 

Section
A string that specifies the section containing the key name. If this parameter is 
empty, READPROFILESTRING returns all section names in the file. 

Key
A string containing the key name whose associated string is to be retrieved. If this 
parameter is empty, all key names in the section specified by section are returned. 

This function is provided for compatibility with 16-bit Windows – based applications. 
Win32 – based applications store initialization information in the registry.

0 Function returns a string representing the value of the specified key

$dev = ReadProfileString("win.ini", "Windows", "Device")

READTYPE

Returns the ASCII representation of a registry entry data type (for example, REG_SZ).

READTYPE ("subkey", "entry")

Example Action Syntax ParametersRemarksReturnsExampleActionSyntax



KiXtart 2010

Subkey
Identifies the subkey containing the entry.

Entry
Identifies the entry whose data type you want to discover.

ASCII representation of data type of specified registry entry.

The following data types can be returned:

• REG_NONE

• REG_SZ

• REG_EXPAND_SZ

• REG_BINARY

• REG_DWORD

• REG_DWORD_LITTLE_ENDIAN

• REG_DWORD_BIG_ENDIAN

• REG_LINK

• REG_MULTI_SZ

• REG_RESOURCE_LIST

• REG_FULL_RESOURCE_DESCRIPTOR

$RowsType = ReadType("HKEY_CURRENT_USER\Console\Configuration", 
"WindowRows")
If @ERROR = 0
   ? "Type of  WindowRows: $RowsType"
Endif

READVALUE

Reads a registry value and returns it as an ASCII string.

READVALUE ("subkey", "entry")
Subkey

Identifies the subkey containing the entry.

Entry
Identifies the entry whose value you want to discover. To read the default entry of a
key, specify an empty string as the entry name ("").

ASCII representation of the specified registry value.

REG_MULTI_SZ (multi-string) variables are returned with the pipe symbol ( | ) used 
as the separator between strings. If a string contains a pipe symbol character, it is 
represented by two pipe symbol characters ( || ).

Parameters Returns Example ActionSyntaxParametersReturns



KiXtart 2010  99

REG_DWORD variables are returned in decimal format.

$Rows = ReadValue("HKEY_CURRENT_USER\Console\Configuration", 
"WindowRows")
If @ERROR = 0
   ? "Number of window-rows: $Rows"
Endif

REDIRECTOUTPUT

Redirects all screen output to a file.

REDIRECTOUTPUT ("file name", overwrite)

File name
A string naming the file to which output should be redirected. If this parameter is 
an empty string (""), output is redirected to the screen. Note that output can also be 
redirected to the CON or NUL device.

Overwrite
Optional numeric value indicating whether to clear the output file before writing 
any data to it. This parameter can have the following values: 

0 New output data appended to the existing contents of file.

1 All data in file overwritten when the output is redirected to the file.

If all output is redirected to a file, the AT, BIG, BOX, and CLS commands are 
ignored.

0 Output redirected

Error code Function failed

IF RedirectOutput("logon.log") = 0
? "Opened 'logon.log' at " + @TIME ?

ENDIF

RIGHT

Returns a specified number of characters from the right side of a string.

RIGHT ("string", length)

String
String expression from which the rightmost characters are returned. 

Example Action Syntax ParametersRemarksReturnsExampleActionSyntaxParameters



KiXtart 2010

Length
Numeric expression indicating how many characters to return. If 0, a zero-length 
string is returned. If greater than or equal to the number of characters in string, the 
entire string is returned. Specifying a negative value will cause Right to return the 
number of characters equal to the total length of the string minus the value 
specified.

The substring requested.

$x = RIGHT(@USERID, 2)   ; get the last 2 chars of the userid

RND

Returns a pseudo random number.

RND (Range)

Range
Optional parameter indicating the range for the return value (maximum and default 
value = 32767).

Pseudo random number.
The RND function returns a pseudorandom integer ranging from 0 to the maximum 
specified. Use the SRND function to seed the pseudorandom-number generator before 
calling RND.

$x = RND()
$x = RND(10)

ROUND

Returns a number rounded to a specified number of decimal places.

ROUND (expression, decimalplaces)

Expression
Any valid numeric expression. 

Decimalplaces
Optional number indicating how many places to the right of the decimal are 
included in the rounding. If omitted, Round returns an integer.

Rounded number.

Returns Example Action SyntaxParameterReturnsRemarksExampleActionSyntaxParameterReturns



KiXtart 2010  101

RTRIM

Strips trailing spaces from an input string and returns the result.

RTRIM ("string")

String
The string from which to strip trailing spaces.

The input string without trailing spaces.

$x = RTRIM(SUBSTR(@IPADDRESS0, 1, 3));   192

SAVEKEY

Saves a registry key (including its subkeys and value entries) to a file.

SAVEKEY ("subkey", "file name")

Subkey
Identifies the subkey you want to save.

File name
Identifies the file in which to save the information.

When this function runs, the destination file is overwritten without warning.
On Windows NT, running SAVEKEY requires Backup and Restore privileges.

0 Subkey saved

Error code Function failed

$ReturnCode = SaveKey("HKEY_CURRENT_USER\EZReg", "c:\temp\tst.reg")
If $ReturnCode = 0
   ? "Key saved...."
Endif  

SENDKEYS

Sends one or more keystrokes to the active window as if typed at the keyboard.

SENDKEYS ("keys")

Keys
String specifying the keystrokes to send.

Each key is represented by one or more characters. To specify a single keyboard 
character, use the character itself. For example, to represent the letter A, use "A" 

Action Syntax Parameter ReturnsExampleActionSyntaxParametersRemarksReturnsExampleActionSyntaxParameters



KiXtart 2010

for string. To represent more than one character, append each additional character 
to the one preceding it. To represent the letters A, B, and C, use "ABC" for string. 
The plus sign (+), caret (^),tilde (~), parentheses ( )  and starting brace “{“ have 
special meanings to SendKeys. To specify one of these characters, enclose it within
braces ({}). For example, to specify the plus sign, use {+}.

To specify characters that aren't displayed when you press a key, such as ENTER 
or TAB, and keys that represent actions rather than characters, use the codes shown
below:

BACKSPACE {BACKSPACE}

BREAK {BREAK}

CAPS LOCK {CAPSLOCK}

DEL {DEL}

DOWN ARROW {DOWN}

END {END}

ENTER {ENTER}

ESC {ESC}

HELP {HELP}

HOME {HOME}

INS {INS}

LEFT ARROW {LEFT}

NUM LOCK {NUMLOCK}

PAGE DOWN {PGDN}

PAGE UP {PGUP}

PRINTSCREEN {PRTSC}

RIGHT ARROW {RIGHT}

TAB {TAB}

UP ARROW {UP}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}



KiXtart 2010  103

F10 {F10}

F11 {F11}

F12 {F12}

F13 {F13}

F14 {F14}

F15 {F15}

F16 {F16}

To specify keys combined with any combination of the SHIFT, CTRL, and ALT 
keys, precede the key code with one or more of the following codes:

SHIFT +

CTRL ^

ALT ~

To specify that any combination of SHIFT, CTRL, and ALT should be held down 
while several other keys are pressed, enclose the code for those keys in 
parentheses. For example, to specify to hold down SHIFT while E and C are 
pressed, use "+(EC)". To specify to hold down SHIFT while E is pressed, 
followed by C without SHIFT, use "+EC".

To specify repeating keys, use the form {key number}. You must put a space 
between key and number. For example, {LEFT 42} means press the LEFT 
ARROW key 42 times; {h 10} means press H 10 times.

SendKeys cannot be used to send keystrokes to an application that is not designed to 
run in Microsoft Windows. Sendkeys also can't send the PRINT SCREEN key 
{PRTSC} to any application.

0 Keystrokes sent

Error code Function failed

Run( "Notepad.exe" )
Sleep 1
SetFocus( "Untitled – Notepad" )
$ReturnCode = SendKeys("Hello World")
Sleep( 2 )
$ReturnCode = SendKeys("~{F4}Y")

SENDMESSAGE

Sends a message across the network to another user or workstation.
]

Remarks Returns Example Action



KiXtart 2010

SENDMESSAGE ("recipient", "message")

Recipient
Identifies the user or workstation to which to send the message.

Message
The message to send.

0 Message sent

Error code Function failed

$ReturnCode = SendMessage("ADMIN" , @USERID + " logged in at " + @TIME)
If $ReturnCode = 0
   ? "Message has been sent.."
Endif

SETASCII

Enables/disables ASCII console output. In KiXtart, standard console output is in 
Unicode, and SetASCII enables you to change this to ASCII, so you can output 
extended characters, such as line characters.

SETASCII("mode")

Mode
String that specifies whether to turn ASCII output on or off. Specifying "ON" will 
turn ASCII output on, and specifying "OFF" will turn ASCII output off.

"ON" | "OFF" Previous output state.

$previousstate = SetASCII( "ON" )

? "═══════════" ; output ASCII line characters

SetASCII( $previousstate )

SETASCII is only supported for backward compatibility. New scripts should use the 
SETOPTION function.

SETCONSOLE

Changes the display state of the command-prompt window in which KiXtart is 
running.

SETCONSOLE("mode")

Syntax Parameters Returns ExampleActionSyntaxParametersReturnsExampleRemarksActionSyntax



KiXtart 2010  105

Mode
String that specifies the new display state. The following table shows the display 
states that are supported by this function.

SHOW Show window

HIDE Hide window

FOREGROUND Move window to foreground

ALWAYSONTOP Bring window to top

MINIMIZE Minimize window

MAXIMIZE Maximize window

If a window is hidden, it does not disappear from the system, but remains active.

0 Display state changed

Error code Function failed

If SetConsole ("FOREGROUND") = 0
   ? "Console moved to foreground......"
Endif

SETDEFAULTPRINTER

Sets the default printer to which applications send print jobs.

SETDEFAULTPRINTER ("printer name")

Printer name
String that specifies the fully qualified name of the printer to set as the default 
printer. Note that if the printer involved was connected to using 
AddPrinterConnection, you must include both the servername and the printer name.

0 Default printer set

Error code Function failed

If AddPrinterConnection ("\\vleerbeer\hp laserjet 4") = 0
   ? "Added printer connection...."
   If SetDefaultPrinter ("\\vleerbeer\hp laserjet 4") = 0
      ? "Set default printer to HP LaserJet 4...."
   Endif
Endif

Parameters Remarks Returns ExampleActionSyntaxParametersReturnsExample



KiXtart 2010

SETFILEATTR

Sets the attributes of a file.

SETFILEATTR ("file name", attributes)

File name
Identifies the file of which you want to set the attributes.

Attributes
Attributes to set for the file. The attributes can be one or more of the following 
values:

1 Read only The file or directory is read-only. Applications can read the 
file but cannot write to it or delete it. In the case of a directory,
applications cannot delete it.

2 Hidden The file or directory is hidden. It is not included in an ordinary
directory listing.

4 System The file or directory is part of, or is used exclusively by, the 
operating system.

32 Archive The file or directory is an archive file or directory. 
Applications use this attribute to mark files for backup or 
removal.

128 Normal The file or directory has no other attributes set. This attribute 
is valid only if used alone.

256 Temporary The file is being used for temporary storage. File systems 
attempt to keep all of the data in memory for quicker access 
rather than flushing the data back to mass storage. A 
temporary file should be deleted by the application as soon as 
it is no longer needed.

4096 Offline The data of the file is not immediately available. Indicates that 
the file data has been physically moved to offline storage.

0 Attributes set

Error code Function failed

$Result = SetFileAttr(@LDRIVE + "\Kix32.exe", 32)

Action Syntax Parameter ReturnsExample



KiXtart 2010  107

SETFOCUS

Sets the input focus to the application specified. This function is very useful in 
combination with the SendKeys function.

SETFOCUS ("Title")

Title
String specifying the title in the title bar of the application window you want to 
activate. In determining which application to activate, title is compared to the title 
string of each running application. If there is no exact match, any application whose
title string begins with title is activated. If there is more than one instance of the 
application named by title, one instance is arbitrarily activated.

0 Focus set to specified application.

Error code Function failed

If SetFocus ("Untitled - Notepad") = 0
   ? "Focus set to Notepad...."
Endif

SETOPTION

SetOption can be used to configure certain options of the KiXtart script engine. 

SETOPTION("option", "value")

Option
Option to set.

Value
Value for the option. 

The options and possible values are described in the following table:

ASCII ON, 
OFF

Default console output is in Unicode. Setting the ASCII 
option to ON changes the output to ASCII, so you can 
output extended characters, such as line characters.

CaseSensitivity ON, 
OFF

By default, all string comparisons are case-insensitive. 
Setting the CaseSensitivity option to ON configures 
KiXtart to make string comparisons case-sensitive.

DisableDebugging ON Disables debugging (effectively disables the DEBUG ON 
command). Note that debugging can not be re-enabled.

Explicit ON, 
OFF

When you enable the Explicit option, you must explicitly 
declare all variables using the Dim, Global, or ReDim 

Action Syntax Parameters ReturnsExampleActionSyntaxParameters



KiXtart 2010

statements. If you attempt to use an undeclared variable 
name, an error occurs.

Use the Explicit option to avoid incorrectly typing the 
name of an existing variable.

HideCursor ON,
OFF

Hides or shows the console cursor.

NoMacrosInStrings ON,
OFF

Determines resolution of macros inside strings. If this 
option is enabled, any ‘@’ character in a string will be left
as-is. The default is OFF.

NoVarsInStrings ON,
OFF

Determines resolution of variables inside strings. If this 
option is enabled, any ‘$’ character in a string will be left 
as-is. The default is OFF.

Wow64FileRedirection ON,
OFF

Enables/disables file redirection on 64-bit editions of 
Windows. See this MSDN article for details of this 
feature.

This option has no effect on 32-bit editions of Windows.

WrapAtEOL ON,
OFF

Enables/disables wrapping of console output at the end of
a line. The default is OFF.

SetOption returns the previous state of the option.

$previousstate = SetOption( "ASCII", "ON" )

? "═══════════" ; output ASCII line characters

$previousstate = SetOption( "ASCII", $previousstate )

SETSYSTEMSTATE

Changes the (power)state of the computer.

SETSYSTEMSTATE (mode, force)

Mode
Optional parameter specifying one of the following modes:

Value Action

0 Lock system (supported on Windows 2000 or higher only).

1 Standby.

2 Hibernate.

3 Poweroff.

Returns Example Action SyntaxParameters

http://msdn.microsoft.com/library/en-us/winprog64/winprog64/file_system_redirector.asp?frame=true


KiXtart 2010  109

Force 
Specifies whether applications with unsaved changes are forcibly closed. If force is not
zero, applications are closed. If force is zero, a dialog box is displayed prompting the 
user to close the applications. 

0 Action succeeded

System error code Action failed

$RC = SetSystemState( 1 , 1 )  ; Force system to StandBy mode

SETTITLE

Sets the title of the current console.

SETTITLE("title")

Title
String that will be used as the new title for the current console. 

The title is only active while KiXtart runs. As soon as KiXtart exits, the original title of
the console will be restored.

0 Title set

Error code Function failed

If SetTitle ("KiXtart Logon") = 0
   ? "Set the new title...."
Endif

SETWALLPAPER

Sets the current wallpaper.

SETWALLPAPER("wallpaper name", mode)

Wallpaper name
String that specifies the name of the bitmap to set as the default wallpaper. 

Mode
Optional parameter specifying one of the following modes:

Value Action

0 Only change the wallpaper for the duration of the current logon session.

1 Changes the wallpaper in the user profile.

Returns Example Action SyntaxParametersRemarksReturnsExampleActionSyntaxParameters



KiXtart 2010

The file specified must be a valid BMP file.

0 Wallpaper set

Error code Function failed

If SetWallpaper ("kixtart.bmp") = 0
   ? "Set current wallpaper to KiXtart.bmp...."
Endif

SHOWPROGRAMGROUP

Instructs Program Manager to minimize, maximize, or restore the window of an 
existing program group.

SHOWPROGRAMGROUP ("group name", show command, common group flag)

Group name
Identifies the group window to minimize, maximize, or restore. 

Show command
Specifies the action Program Manager is to perform on the group window. This 
parameter is an integer and it must have one of the following values.

Value Action

1 Activates and displays the group window. If the window is minimized or 
maximized, Windows restores it to its original size and position.

2 Activates the group window and displays it as an icon.

3 Activates the group window and displays it as a maximized window.

4 Displays the group window in its most recent size and position. The 
active window remains active.

5 Activates the group window and displays it in its current size and 
position.

6 Minimizes the group window.

7 Displays the group window as an icon. The active window remains 
active.

8 Displays the group window in its current state. The active window 
remains active.

Common group flag
Optional numeric parameter. This parameter is available only on Windows NT or 
higher. Common group flag can have the following values:

0 Acts upon a personal group.

1 Acts upon a common group. To manipulate a common group, the user must 

Remarks Returns Example ActionSyntaxParameters



KiXtart 2010  111

have administrative privileges, or the function fails.

0 Program group maximized, minimized, or restored

Error code Function failed

If ShowProgramGroup("NewGroup", 6, 0) = 0
   ? "NewGroup has been minimized...."
Endif

SHUTDOWN

Shuts down or reboots a computer.

SHUTDOWN ("computer", "message", wait, force, options)

Computer
The name of the computer that is to be shut down or rebooted. An empty string("") 
indicates the local computer.

Message 
String that specifies a message to display in the Shutdown dialog box.

Wait 
Optional parameter specifying the time in seconds that the dialog box is displayed. 
While the dialog box is displayed, system shutdown can be stopped by using the 
Win32 AbortSystemShutdown function.

If wait is not zero, SHUTDOWN displays a dialog box on the specified computer. 
The dialog box, which displays the name of the user who called the function and 
the message specified by message, prompts the user to log off. The system beeps 
when the dialog box is created. 

The dialog box remains on top of other windows and can be moved but not closed. 
A timer counts down the time remaining before a forced shutdown. If the user logs 
off, the system shuts down immediately. Otherwise, the computer is shut down 
when the timer expires. 

If wait is zero, the computer shuts down without displaying the dialog box, and the 
shutdown cannot be stopped by AbortSystemShutdown.

Force 
Specifies whether applications with unsaved changes are forcibly closed. If force is
not zero, applications are closed. If force is zero, a dialog box is displayed 
prompting the user to close the applications.

Options
Optional parameter specifying one of the following options.

Value Action

1 Reboot computer after shutdown.

Returns Example Action SyntaxParameters



KiXtart 2010

2 Poweroff the system after shutdown (NB: this option only works for the 
local system).

0 Computer shut down

System error code Function failed

SHUTDOWN does not work reliably on Windows 9x due to an issue in the 
underlying Windows API. As a workaround, the following command can be used: 

SHELL "%windir%\RUNDLL32.EXE user.exe,ExitWindows"

$RC = Shutdown("", "System is being rebooted to enable new settings.", 
60, 0, 1)

SIDTONAME

Translates a Security Identifier (SID) into a name.

SIDTONAME ("sid")

SID 
String representation of SID to translate.

SIDTONAME is not supported on Windows 9x.

0 Name corresponding to SID.

Error code Function failed

? SidToName( "S-1-1-0") ; displays ‘Everyone’

If InGroup( SidToName( "S-1-5-32-544" ) )
   ? "Must mean current user is a member of local Administrators"
Endif

SPLIT

Returns a zero-based, one-dimensional array containing a specified number of 
substrings.

SPLIT ("string", "delimiter", count)

String 
Required. String expression containing substrings and delimiters. If expression is a 
zero-length string, Split returns an empty array, that is, an array with no elements 
and no data.

Returns Remarks Example ActionSyntaxParameterRemarksReturnsExampleActionSyntaxParameter



KiXtart 2010  113

Delimiter 
Optional. String character(s) used to identify substring limits. If omitted, the space 
character (" ") is assumed to be the delimiter. If delimiter is a zero-length string, a 
single-element array containing the entire expression string is returned.

Count 
Optional. Number of substrings to be returned; -1 indicates that all substrings are 
returned. 

An array containing the substrings found in the input string.

$Myarray = Split("aaa~~bbb~~ccc", "~~")

For Each $Element In $MyArray
   ? $Element ; will display "aaa", "bbb" and "ccc"
Next

SRND

The SRND function sets the starting point for generating a series of pseudorandom 
integers. To reinitialize the generator, use 1 as the seed argument. Any other value for 
seed sets the generator to a random starting point. RND retrieves the pseudorandom 
numbers that are generated. Calling RND before any call to SRND generates the same 
sequence as calling SRND with seed passed as 1.

SRND ( seed )

Seed
Numeric value to seed the generator with.

Nothing.

SRND( @MSECS )

SUBSTR

Returns part of a string.

SUBSTR ("string", start, length)

String
The string from which to extract a substring. 

Start
Numeric value representing the offset in the string where the substring begins.

Returns Example Action SyntaxParameterReturnsExampleActionSyntaxParameters



KiXtart 2010

Length
Optional numeric value representing the length of the substring. If omitted or if 
there are fewer than Length characters in the text (including the character at start), 
all characters from the start position to the end of the string are returned.

The substring indicated by start and length.

$x = SUBSTR(@USERID, LEN(@USERID) - 2, 2)   ; get the last 2 chars of 
the userid

TRIM

Strips leading and trailing spaces from an input string and returns the result.

TRIM ("string")

String
The string from which to strip spaces.

The input string without leading and trailing spaces.

$x = TRIM(SUBSTR(@IPADDRESS0, 1, 3))

UBOUND

Returns the largest available subscript for one of the dimensions of an array.

UBOUND (array, dimension)

Array
The array you want to know the upper boundary of.

Dimension
Optional parameter indicating the dimension of the array you want to know the 
upper boundary of. The default is 1.

-1 Array dimension has zero elements.

>= 0 Largest available subscript for the indicated dimension of the array.

$x = UBOUND($MyArray)

UCASE

Returns a string in uppercase.

UCASE ("string")

Returns Example Action SyntaxParameterReturnsExampleActionSyntaxParameterReturnsExampleActionSyntax



KiXtart 2010  115

String
The string you want to change to uppercase.

The input string in uppercase.

$x = UCASE(@USERID)

UNLOADHIVE

Unloads the specified key and subkeys from the registry.

UNLOADHIVE ("key")

Key
The key you want to unload. This key must have been created using LoadHive.

On Windows NT, using UNLOADHIVE requires Backup and Restore privileges.

0 Key loaded

Error code Function failed

$ReturnCode = UnLoadHive( "HKEY_USERS\Fiets" )

If $ReturnCode = 0
   ? "Hive unloaded...."
Endif

VAL

Returns the numeric value of a string.
VAL ("string")
String

The string whose numeric value you want to discover. By default, Val expects the 
string to be in decimal format. To determine the numeric value of a hexadecimal 
string, start the string with an ampersand ‘&’.

The numeric value of the input string.

$x = VAL(SUBSTR(@IPADDRESS0, 1, 3))
$x = VAL("&A34")

Parameter Returns Example ActionSyntaxParametersRemarksReturnsExampleActionSyntaxParameterReturnsExamples



KiXtart 2010

VARTYPE

Returns an integer value indicating the subtype of a variable.

VARTYPE($variable)

Variable
Any type of variable. 

0 Empty

1 Null (no valid data)

2 Integer

3 Long integer

4 Single-precision floating-point number

5 Double-precision floating-point number

6 Currency

7 Date

8 String

9 Object handle

10 Error

11 Boolean

12 Variant (used only with arrays of Variants)

13 A data-access object

17 Byte

8192 Array (can only occur in combination with one of the other values)

$MyVar = "AnyData"
? VarType( $MyVar ) ; will display "8" (String)

$MyArray = "a","b","c"
? VarType( $MyArray ) ; will display "8204" (Array of variants)
? VarType( $MyArray[0] ) ; will display "8" (String)

VARTYPENAME

Returns a string that provides type information about a variable.

VARTYPENAME ($variable)

Action Syntax Parameters ReturnsExampleActionSyntax



KiXtart 2010  117

Variable
Any type of variable.

Byte Byte value

Char Single character value

Integer Integer value

Long Long integer value

Single Single-precision floating-point value

Double Double-precision floating-point value

Currency Currency value

Decimal Decimal value

Date Date or time value

String Character string value

Boolean Boolean value; True or False

Empty Unitialized

Null No valid data

Object Generic object

Unknown Unknown object type

Nothing Object variable that doesn't yet refer to an object instance

Error Error

[ ] Array (can only occur in combination with one of the other values)

? VarTypeName("KiXtart")    ; Displays "String".
? VarTypeName(4)            ; Displays "Long".
? VarTypeName(37.50)        ; Displays "Double".
? VarTypeName($ArrayVar)     ; Displays "Variant[]".

WRITELINE

Appends a line to the end of a file. If WriteLine encounters an error, @ERROR is set to
the relevant errorcode.

WRITELINE (file handle, "linetowrite")

File handle
A numeric expression indicating the file handle of the file to append to. Possible 
values range from 1 to 10.

LineToWrite
The string you want to write to the file. 

Parameters Returns Example ActionSyntaxParameter



KiXtart 2010

WriteLine does not automatically append a <Carriage Return>, so if you want to write 
a <Carriage Return>, you should add it to the string (as in : $LineToWrite + @CRLF).

-4 File not open for writing

-3 File handle not open

-2 Invalid file handle specified

-1 End of file

0 Line written successfully

IF Open( 3 , "C:\TEMP\LOG.TXT" , 5 )  = 0
   $x = WriteLine( 3 , "KiXtart started at " +  @TIME + @CRLF
ELSE
   BEEP
   ? "failed to open file, error code : [" + @ERROR + "]"
ENDIF

WRITEPROFILESTRING

Copies a string to an initialization file.

WRITEPROFILESTRING ("file name", "section", "key", "string")

File name
String identifying the initialization file. If this parameter does not include a full 
path, Windows searches for the file in the Windows directory.

Section
String containing the name of the section of the initialization file where string is 
copied. If the section does not exist, it is created. The section name is not case-
sensitive, and can contain any combination of uppercase and lowercase letters. 

Key
String containing the name of the key to associate with string. If the key does not 
exist in the specified section, it is created. If this parameter is empty, the entire 
section, including all entries within the section, is deleted.

String
String to write to the file. If this parameter is empty, the key identified by key is 
deleted.

On Windows 9x, use of the tab character (\t) is not supported as part of this parameter.

This function is provided for compatibility with 16-bit Windows-based applications. 
Win32-based applications store initialization information in the registry.

0 Profile string written

Remarks Returns Example ActionSyntaxParameters NoteRemarksReturns



KiXtart 2010  119

Error code Function failed

WRITEVALUE

Creates a new key, adds another value-name to an existing key (and assigns it a value),
or changes the value of an existing value-name.

WRITEVALUE ("subkey", "entry", "expression", "data type")

Subkey
Identifies the subkey where you want to write a value entry.

Entry
The name of the entry. To write to the default entry of a key, specify an empty 
string as the entry name ("").

Expression
The data to store as the value of the entry.

REG_MULTI_SZ (multi-string) variables are returned with the pipe symbol ( | ) used 
as the separator between strings. If a string contains a pipe symbol character, it is 
represented by two pipe symbol characters ( || ).
Data type

Identifies the data type of the entry.

The following data types are supported:

• REG_NONE

• REG_SZ

• REG_EXPAND_SZ

• REG_BINARY

• REG_DWORD

• REG_DWORD_LITTLE_ENDIAN

• REG_DWORD_BIG_ENDIAN

• REG_LINK

• REG_MULTI_SZ

• REG_RESOURCE_LIST

• REG_FULL_RESOURCE_DESCRIPTOR

0 Value entry written

Error code Function failed

Action Syntax Parameters Returns



KiXtart 2010

WriteValue("EZReg\Test", "A MultiString variable", "Line 1|Line 2|Line 3
with a || in it|", "REG_MULTI_SZ")
If @ERROR = 0
   ? "Value written to the registry"
Endif

Example



KiXtart 2010  121

KiXtart Macro Reference
Macros can be used anywhere an expression is expected. Supported macros are 
defined in the following table.

Macro Definition

@ADDRESS Address of the network adapter

@BUILD Build number of the operating system

@COLOR Current console colour setting

@COMMENT User comment

@CPU Name of the CPU (e.g.: "Intel Pentium III").

@CRLF Carriage-return + Line-feed

@CSD CSD information (e.g.: "Service Pack 1")

@CURDIR Current directory

@DATE Date (in the format YYYY/MM/DD)

@DAY Day of the week (Monday, Tuesday, and so on)

@DOMAIN Domain or workgroup the computer belongs to

@DOS Version of Windows NT 

@ERROR Return code of the most recent command or function. A return 
code of 0 means the command or function was successful. Any 
other value indicates an error.

@FULLNAME Full name of current user

@HOMEDIR Short name of the directory part of home directory

@HOMEDRIVE* Drive letter of drive containing home directory

@HOMESHR Server and share name part of home directory

@HOSTNAME Fully qualified TCP/IP host name (including TCP/IP domain 
name)

@INWIN Operating system: 1 = Windows NT; 2 = Windows 9x

@IPADDRESSx TCP/IP address (possible values for x are 0 - 3). 
Note   Addresses are padded so that the resulting string always 
consists of four sets of three characters separated by periods. 
For example, if your IP address is 123.45.6.7, @IPADDRESS0
is 123. 45. 6. 7.

@KIX KiXtart product name and version

@LANROOT Directory where network software resides (usually 
Systemroot\System32)

@LDOMAIN* Logon domain

@LDRIVE Drive that is redirected to \\logonserver\NETLOGON

@LM Version of network software 



KiXtart 2010

@LOGONMODE If 1, indicates that KiXtart assumes to be running during the 
logon sequence

@LONGHOMEDIR Long name of the directory part of home directory

@LSERVER Logon server

@MAXPWAGE Maximum password age

@MDAYNO Day of the month (1-31)

@MHZ Approximation of the CPU speed. Not available on Windows 
9x.

@MONTHNO Months since January (1-12)

@MONTH Name of the month 

@MSECS Milliseconds part of the current time 

@ONWOW64 If this macro returns 1, KiXtart is running in the WOW64 
environment on an Windows x64 system.

@PID Process ID of the KiXtart process 

@PRIMARYGROUP* Current user's primary group 

@PRIV User's privilege level (GUEST, USER, ADMIN)

@PRODUCTSUITE OS suite. Combination of any of the following values:

1    - "Small Business"

2    - "Enterprise"

4    - "BackOffice"

8    - "CommunicationServer"

16   - "Terminal Server"

32   - "Small Business (Restricted)"

64   - "EmbeddedNT"

128  - "DataCenter"

256  - "Single user Terminal Server"

512  - "Home Edition"

1024 - "Blade Server"

2048 - "Embedded (Restricted)"

4096 - "Security Appliance"

8192 - "Storage Server"

16384- "Compute Cluster Server"

@PRODUCTTYPE OS type. Possible values:

"Windows 95"

"Windows 98"

"Windows Me"

http://msdn.microsoft.com/library/en-us/win64/win64/running_32_bit_applications.asp


KiXtart 2010  123

"Windows NT Workstation"

"Windows NT Server"

"Windows NT Domain Controller"

"Windows 2000 Professional"

"Windows 2000 Server"

"Windows 2000 Domain Controller"

"Windows XP Home Edition"

"Windows XP Professional"

"Windows XP Professional Tablet PC"

"Windows XP Media Center Edition"

"Windows XP Starter Edition"

"Windows Fundamentals for Legacy PCs "

"Windows Server 2003"

"Windows Server 2003 Domain Controller"

"Windows Server 2003 R2"

"Windows Server 2003 R2 Domain Controller"

"Windows Vista Starter Edition"

"Windows Vista Home Basic Edition"

"Windows Vista Home Basic Edition N"

"Windows Vista Home Premium Edition"

"Windows Vista Business Edition"

"Windows Vista Business Edition N"

"Windows Vista Enterprise Edition"

"Windows Vista Ultimate Edition"

"Windows Server Longhorn"

"Windows Server Longhorn Core"

"Windows Server Longhorn Small Business Edition"

"Windows Server Longhorn Enterprise Edition"

"Windows Server Longhorn Enterprise Edition Core"

"Windows Server Longhorn Datacenter Edition"

"Windows Server Longhorn Datacenter Edition Core"



KiXtart 2010

"Windows Server Longhorn Enterprise Edition for Itanium"

"Windows Server Longhorn Web Server Edition"

"Windows Server Longhorn Compute Cluster Edition"

"Windows Server Longhorn Home Edition"

"Windows Storage Server Longhorn Express Edition"

"Windows Storage Server Longhorn Standard Edition"

"Windows Storage Server Longhorn Enterprise Edition"

"Windows Storage Server Longhorn Small Business Edition"

"Windows Server Centro"

"Windows Server Centro Premium"

@PWAGE Password age

@RAS Number of active Remote Access Service (RAS) connections

@RESULT Returns command specific information (e.g.: the drive letter of 
an automatic redirection command)

@RSERVER* KXRPC server used for the current session

@SCRIPTDIR Directory of current script

@SCRIPTEXE Name of KiXtart executable ("KIX32.EXE", "WKIX32.EXE")

@SCRIPTNAME Name of current script

@SERROR Error text corresponding with @ERROR

@SID* Current user's Windows NT Security Identifier (SID)

@SITE** Name of the site in which the system resides

@STARTDIR Directory from which KiXtart was started

@SYSLANG Full English name of the language of the operating system 
specified in the format defined by  ISO Standard 639. (example
: "0413Dutch (Standard)").

@TICKS Returns the number of milliseconds that have elapsed since the 
system was started.

@TIME Current time (in the format HH:MM:SS)

@TSSESSION If this macro returns 1, KiXtart is running in a Terminal Server 
session.

@USERID Current user's Windows NT user ID

@USERLANG Full English name of the language selected by the current user 
specified in the format defined by  ISO Standard 639. (example
: "0413Dutch (Standard)").

@WDAYNO Days since Sunday (1 – 7)

@WKSTA Computer name

@WUSERID Current user's Windows user ID

@YDAYNO Days since January 1 (1 – 365)

@YEAR Current year



KiXtart 2010  125

*Available on computers running Windows 9x only if the KiXtart RPC service is 
running.
** Only available on clients with full Active Directory support.

During the logon sequence, WUSERID is empty on computers running Windows 9x if 
Windows NT Networking has been configured as the system's primary network 
provider.

The following examples show the correct use of KiXtart macros:

@LM "2.10"
@DATE "1997/10/03"
DISPLAY @USERID + ".TXT" displays the file "RUUDV.TXT"
CD "\DATA\" + @DOMAIN changes the current directory to "\DATA\your-

domain"

Note



KiXtart 2010

APPENDIX A: KiXtart on Windows 9x
The following paragraphs provide details on issues and considerations when running 
KiXtart 2010 on Windows 9x systems.

Thunking and the KiXtart RPC Service
Unlike Windows NT, Windows 9x does not provide all the Win32 APIs that KiXtart 
needs to gather information, such as the user's full name and group memberships. 
KiXtart uses two programming methods to solve this problem: thunking and Remote 
Procedure Calls (RPCs)

Thunking is the term used when connecting to a 16-bit API from a 32-bit application. 
The 16-bit APIs required by KiXtart are provided by Netapi.dll. Kx16.dll and 
Kx32.dll provide the so-called thunking layer required to connect to Netapi.dll.

Unfortunately, Netapi.dll still does not provide all the information that is of interest to 
KiXtart. Most notably, Netapi.dll does not provide access to the logon domain, the 
security identifier (SID), the primary group, the home drive and local groups. The 
KiXtart RPC service provides these missing pieces of information to KiXtart using 
Remote Procedure Calls (RPCs). The client side of the RPC interface is provided in 
Kx95.dll

The server side of the RPC interface is provided in Kxrpc.exe, and this should be 
installed and run on one or more Windows NT systems. The KiXtart RPC service can 
run on any Windows NT system: a workstation, a standalone server, or a logon server. 
The system must be either a member of the logon domain or a member of a resource 
domain that has a trust relationship with the logon domain.

Using the KiXtart RPC service is optional. However, without it, extended information, 
such as local groups, is not available to Windows 9x systems.

Choosing Where to Install the KiXtart RPC Service
When considering where to install the KiXtart RPC service, you must decide how 
KiXtart locates servers running the KiXtart RPC service. The simplest choice is to 
install the KiXtart RPC service on all the logon servers in the logon domain, which 
automatically provides load balancing.

If the KiXtart RPC service cannot be installed on all logon servers, KiXtart must be 
directed to the server(s) running the service. This can be achieved using one of the 
following options:

• Setting an environment variable before running KiXtart .

• Adding a subkey to the registry of Windows 9x clients.

Note



KiXtart 2010  127

• Adding an initialization file to the KiXtart  startup directory.

These methods are described in full in the following sections.

By default, KiXtart tries the methods in the order specified above. If none of the 
methods result in a connection with a KXRPC service, KiXtart attempts to connect to 
the KXRPC service on the logonserver. Optionally, the order in which the methods are
attempted can be changed using the RPCSearchOrder commandline parameter (‘/r’). 

The RPCSearchOrder parameter expects a string of characters indicating the search 
order, where each method is represented by a single letter:

e environment
r registry
i INI file
l logonserver

Examples:

KIX32 <script> /r=li ; attempt logonserver first, then INI file

KIX32 <script> /r=er ; attempt environment first, then registry

KIX32 <script> /r=r ; attempt only the registry

Note that previous versions of KiXtart always first attempted to connect to the KiXtart 
RPC service on the logon server, followed by the settings in the environment, registry 
and/or INI file.

Setting a KXRPC Environment Variable
The KXRPC environment variable is set to a comma-delimited list of the full name of 
the server running the KiXtart RPC service. For example:
set kxrpc= \\MyServer
– Or –

set kxrpc= \\MyServer,\\AnotherServer

Adding a KiXtart Subkey to the Windows Registry
Another way to direct KiXtart to a server running the KiXtart RPC service is to add 
the following subkey to the registry of Windows 9x clients:

HKEY_LOCAL_MACHINE\Software\Microsoft\KiXtart
In the new KiXtart subkey, add a value called KXRPC with a REG_SZ data type. Set
the value of KXRPC to a comma-delimited list of the full names of the KiXtart RPC 
servers.



KiXtart 2010

Adding a Kixtart.ini File
KiXtart can also be directed to the KXRPC server by creating a Kixtart.ini file and 
placing it on the NETLOGON share of the logon server, or in the directory from which
KiXtart is started.

Kixtart.ini contains a [KXRPCMapping] section, which can include an entry for each 
domain or workgroup that is to be enabled for use of KiXtart . Optionally, a 
Default= entry can be added to refer all unknown workgroups or domains to a 
specific KXRPC server.

The following is a sample Kixtart.ini file:

[KXRPCMapping]
MyDomain=\\MyServer1,\\MyServer2,\\MyServer3
YourDomain=\\YourServer
Default=\\ServerA,\\ServerB

If multiple KXRPC servers are specified for one mapping, KiXtart connects to them in
the sequence specified. 

To install the KiXtart RPC service
1. Copy Kxrpc.exe to a directory on the server that will run the service.

2. At the command prompt, switch to that directory and type the following command:

KXRPC –install

3. Start the service from the Services snap-in or using the following command:

NET START KXRPC

The KiXtart RPC service can be installed on a remote server using a utility such as SC,
RSERVICE or XNET.

The KiXtart RPC service should only be installed when necessary. Please see the 
previous paragraphs for details on when and where to install the service.

Updating the KiXtart RPC service
The KiXtart RPC service provided with version 4.20 and higher is not downward 
compatible with previous versions. If you choose to update the KIXtart RPC service, 
you must ensure to update the client-side (KX95.DLL) on all clients before you update
the service. Failing to do so will cause clients using older versions of KX95.DLL to 
stop functioning correctly.

Note Note



KiXtart 2010  129

The proper steps to update to the latest version of the KiXtart RPC Service are:
1. Update KX95.DLL on all clients.

2. On the server(s), open a command prompt, switch to the directory on the server 
where you previously installed the service, and type the following command:

KXRPC –remove

3. Copy the new version of Kxrpc.exe to the directory on the server where you 
previously installed the service.

4. At the command prompt type the following command:

KXRPC –install

5. Start the service from the Services snap-in or using the following command:

NET START KXRPC

The KiXtart RPC service can be installed on a remote server using a utility such as SC,
RSERVICE or XNET.

Starting the KiXtart RPC Service
When it is installed, the KiXtart RPC service is configured to start automatically at 
system startup. After the initial installation, the service can be started from the Control 
Panel / Services applet or from the command prompt.

To start the KiXtart RPC service

1. In the Control Panel / Services applet, select the KiXtart RPC service, and then 
click Start.

– Or –

2. At the command prompt, type the following command:

net start kxrpc

Known Problems of KiXtart on Windows 9x
The following is a list of known issues that may be encountered when using KiXtart on
Windows 9x:

• If KiXtart is used on systems that are configured to run both Microsoft 
Networking client software and Novell Netware client software, compatibility 
issues can cause KiXtart to fail to retrieve network information and/or find any 
script. If these problems occur, make the following change in the registry of the 
affected clients:

HKEY_LOCAL_MACHINE
   System
      CurrentControlSet
         Services



KiXtart 2010

           MSNP32
              Network Provider CallOrder [00 00 00 40]  >change to> [00 00 00 20]
           NOVELLNP
               Network Provider CallOrder [00 00 00 20]  >change to> [00 00 00 40]

• When text is output to bottom-right position of the screen, the screen scrolls.
This issue is related to the Console API on Windows 9x.

• Color is sometimes garbled when the screen is scrolled.
This problem is caused by the way Windows 9x handles color attributes.

• On Windows 9x, SAVEKEY produces a hidden, read-only system file in the 
Windows System directory. On Windows NT, the same command produces a 
normal file in the current directory. 

In either operating system, the file can be used with LOADKEY (after it has been 
made visible using ATTRIB).

• On Windows 9x, if a network drive is removed that was redirected from My 
Computer or Windows Explorer, the drive remains visible in the Windows 
interface as a disabled or ghosted drive, and the drive is reconnected when the 
user clicks it.

This scenario can be prevented with an additional step. After the drive has been 
removed, delete the corresponding subkey from the registry. For example:

USE E: /d
DELKEY("HKEY_CURRENT_USER\Network\Persistent\E")

• The logon script is sometimes skipped completely.

This problem can be caused by a sharing bug in Msnet32.dll. The bug was fixed in 
version 4.00.951 of Msnet32.dll. The latest version of this file is available from 
your local Microsoft Product Support Services contact (refer to Q150589). 

Another reason for the logon script to be skipped on Windows 9x is a space in the 
logon script field in NT User Manager. Although NT User Manager accepts 
multiple strings (and spaces) in the logon script field, Windows 9x fails to run the 
logon script.

• The ShutDown function does not work reliably.
This problem is caused by the underlying Windows API. It may be fixed in a future
version of Windows 9x. As a workaround, try the following command : 

SHELL "%windir%\RUNDLL32.EXE user.exe,ExitWindows"

The ‘MAP ROOT’ issue.
The Windows redirector software on Windows 9x systems does not support the 
concept of so-called ‘deep’ redirections (i.e.: redirecting a drive to a directory below 
the sharelevel, e.g.: "\\SERVER\SHARE\USER"). As such, Novell’s MAP ROOT 



KiXtart 2010  131

feature cannot be emulated. This is a limitation of the redirector software, and 
unfortunately, KiXtart cannot work around this.

Deep redirections are possible on Windows NT or higher systems, both with the 
(NET) USE command as well as with the (external) SUBST command.

Running KiXtart with Lmscript Emulation
Normally, when a user logs on to a LAN Manager or Windows NT domain from 
Windows 9x, the Windows API responsible for processing the logon request starts a 
program called Lmscript to run the logon script. The sole responsibility of Lmscript is 
to inform the logon API when the logon script has finished by creating a semaphore 
file (also called a cookie).

Unfortunately, the original Lmscript.exe takes up a lot of memory. To solve this issue, 
KiXtart can be used as a replacement for Lmscript.exe. This not only saves memory, 
but also means that the Kix32.exe does not have to be read from the network during 
the logon sequence, as it is automatically run from the local hard disk. The benefit of 
this is minimal in a normal LAN environment, but can be substantial in a WAN or 
RAS environment.

To enable Lmscript emulation on computers running Windows 9x 

1. In the Windows\System folder, rename the original Lmscript.exe.

2. Rename Kix32.exe to Lmscript.exe and then copy it to the Windows\System folder.

3. In User Manager, in the Logon Script Name box, specify a KiXtart script as the 
logon script for the user (for example, Kixtart).

4. At the end of the specified KiX script, add a line containing the COOKIE1 
command to create the semaphore file.

•

Users who do not use Lmscript emulation (such as users running Windows 9x on the 
LAN or users running Windows NT Workstation) cannot run the logon script unless 
there is also a batch file with the same name as the KiX script specified for the user.

The following example illustrates the use of such a batch file for a user named Fred.

User name Fred

Logon script Script1

Contents of the Scripts directory on 
the logon server

Script1.bat
Script1.kix
Kix32.exe

Contents of Script1.bat @ECHO OFF
%0\..\Kix32 Script1
EXIT 0

Contents of Script1.kix CLS

Note Note



KiXtart 2010

BIG
? "Hi, @USERID"
SLEEP 10
COOKIE1
EXIT 0

If Fred uses a computer running Windows NT to log onto the network, or if he uses a 
computer running Windows 9x with the original Lmscript.exe, Script1.bat starts and 
then in turn starts Kix32.exe with Script1.kix as the logon script. If he uses a computer 
running Windows 9x and logs on with Kix32.exe renamed as Lmscript.exe, Script1.kix
runs automatically.



KiXtart 2010  133

APPENDIX B: Error handling
To find out if a KiXtart command or function is successful, always check the 
@ERROR and @SERROR macros. Note that most functions also return the error 
code.

If @ERROR is zero, the previous command or function was successful. If @ERROR 
is non-zero, the value corresponds to the error code returned by the most recently 
executed Win32 API. 

To find out what a specific error code means, please consult the list of Win32 error 
codes on the Microsoft Developer Network 
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/debug/base/system_error_codes.asp).



KiXtart 2010

Where to find more information
If you are interested in discussing tips and tricks on KiXtart usage and/or in sharing 
sample scripts, please consider joining one of the international communities of KiXtart
users. To do so, connect to one of the following sites:
http://kixtart.org
http://www.scriptlogic.com/kixtart

If you have feedback or questions regarding KiXtart, please contact 
kixtart2001@hotmail.com or ruudv@microsoft.com.

To find the latest versions of KiXtart, and more sample scripts and tips and tricks on 
KiXtart, please visit one of the following sites:
http://kixtart.org
http://www.scriptlogic.com/kixtart
http://kixhelp.com
http://kix.isorg.com/
http://home.wanadoo.nl/scripting/summary.htm

If you are interested in a ‘KiXtart-aware’ script-editor, please visit:
http://ultraedit.com
http://www.adminscripteditor.com
http://www.textpad.com

If you want to read more about KiXtart, please consider this excellent book:
http://www.kixscripts.com/book/overview.html, now available in hard copy from 
Mann Publishing: http://www.mannpublishing.com/Catalog/BookDetail.aspx?
BookID=31.

http://www.mannpublishing.com/Catalog/BookDetail.aspx?BookID=31
http://www.mannpublishing.com/Catalog/BookDetail.aspx?BookID=31
http://www.kixscripts.com/book/overview.html
http://www.textpad.com/
http://www.adminscripteditor.com/
http://ultraedit.com/
http://kixhelp.com/
http://www.scriptlogic.com/kixtart
http://kixtart.org/
mailto:ruudv@microsoft.com
mailto:kixtart2001@hotmail.com
http://www.scriptlogic.com/kixtart
http://kixtart.o/


KiXtart 2010  135

Acknowledgements
KiXtart is the result of feedback, suggestions and ideas from people all over the world 
and from all types of organizations. Their passionate discussions, frantic testing and 
even scripting competitions have greatly helped to produce the truly exciting end result
that is now called KiXtart 2010.

I would like to express my sincerest thanks to all of you, and by all means: Keep 
Scripting!

Very special thanks go out to all the enthusiastic die-hards who over the years 
supported KiXtart (and kept me alive) by hosting and/or actively participating in 
KiXtart web-sites, forums, mail-lists and bulletin boards. The group of people involved
is far too large to list in full, but some names absolutely require mentioning: Steve 
Wilson, Steve Ognibene, Larry Duncan, Brian Styles, Jim Kay,  Jooel Nieminen, 
Howard Bullock, Bob Kelly, Shawn Tassie, Kevin Cowans, Kent Dyer, Les Ligetfalvy,
Erik Kærholm, Jochen Polster, Chris Matheson, Bryan Steele, Brad Schunk, Ben 
Burnett, Rob Butler and of course Henri Wiering of http://kixtart.org: thanks guys, you
really make a difference!

Once again, my sincerest thanks to all of you, and I hope to meet you again in the next 
release…!

http://kixtart.org/


KiXtart 2010

About KiXtart
KiXtart  is a spare time project of Ruud van Velsen of Microsoft Netherlands.

KiXtart was developed on Windows XP using Microsoft Visual Studio, Microsoft 
Visual C 6.0 SP5, Microsoft Assembler 6.1 and the Windows 32 Software 
Development Kit.

The SPK format used by the PLAY command was originally designed by Gordon E. 
Peterson II. The SPK files were translated from BASIC and Assembler programs 
gathered from various public domain sources. 

Disclaimer and distribution information.
THE INFORMATION AND CODE PROVIDED AS PART OF KIXTART 
(HEREUNDER COLLECTIVELY REFERRED TO AS "SOFTWARE") IS 
PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS 
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. IN NO EVENT SHALL RUUD VAN VELSEN OR MICROSOFT 
CORPORATION OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES 
WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL, 
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, 
EVEN IF RUUD VAN VELSEN OR MICROSOFT CORPORATION OR ITS 
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR 
LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL 
DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.

This Software is provided to you as CareWare. This Software may be copied, installed 
and evaluated royalty-free subject to the following conditions:
1. If you continue to use the Software, you are requested to make a charitable 

donation as described in the paragraph "KiXtart: Do You Care?"

2. You must copy all Software without modification and must include all pages.

3. You must place all copyright notices and other protective disclaimers and notices 
contained on the Software on all copies of the Software.

4. You may not distribute this Software for profit.

5. Distribution of this Software as part of a commercial product or service requires 
written consent from the author of this Software.

6. You agree to indemnify, hold harmless, and defend Ruud van Velsen, Microsoft 
and its suppliers from and against any claims or lawsuits, including attorneys' fees, 
that arise or result from the use or distribution of the Software.

Copyright© 2006 Ruud van Velsen. All rights reserved.


	Contents
	Introduction
	What’s New
	KiXtart: Do You Care?
	System Requirements
	KiXtart 2010 Files
	Installing KiXtart
	To install KiXtart on the network
	To install KiXtart on a client
	Required files for Windows NT/2000/XP Clients
	Required files for Windows 9x Clients
	Uninstalling KiXtart
	Updating from previous versions

	Running KiXtart
	Running KiXtart from a Batch File
	Pre-tokenizing scripts
	Locating Files

	Troubleshooting KiXtart
	Introduction
	Common issues
	Debug mode

	Miscellaneous…
	KiXtart and the console
	COM automation in KiXtart 2010
	Creating a Reference to a COM Object
	Releasing an Object
	Using an Object's Properties and Methods
	Default Properties
	COM Automation Samples

	Group-membership information.
	Introduction.
	Group-membership information cache.


	General Syntax Rules
	Block Commenting
	Dynamic Program Variables
	Introduction
	Storing data in variables
	Declaring Variables
	Implicit declaration
	Scope of variables
	Variable types
	Arrays

	Expressions
	Operator precedence


	KiXtart Command Reference
	KiXtart Function Reference
	Return Values
	Registry Functions

	KiXtart Macro Reference
	APPENDIX A: KiXtart on Windows 9x
	Thunking and the KiXtart RPC Service
	Choosing Where to Install the KiXtart RPC Service
	Setting a KXRPC Environment Variable
	Adding a KiXtart Subkey to the Windows Registry
	Adding a Kixtart.ini File

	To install the KiXtart RPC service
	Updating the KiXtart RPC service
	Starting the KiXtart RPC Service

	Known Problems of KiXtart on Windows 9x
	The ‘MAP ROOT’ issue.
	Running KiXtart with Lmscript Emulation

	APPENDIX B: Error handling
	Where to find more information
	Acknowledgements
	About KiXtart
	Disclaimer and distribution information.

