MSX2 TECHNICAL HANDBOOK ----------------------- Edited by: ASCII Systems Division Published by: ASCII Coprporation - JAPAN First edition: March 1987 Text file typed by: Nestor Soriano (Konami Man) - SPAIN March 1997 Changes from the original: - In Figure 4.72, last "10000H" is corrected to "1FFFFH". - In Table 4.6, in TEOR line, "else DC+..." is corrected to "else DC=..." - In Figure 4.76, in R#45 figure, DIX and DIY bits have been placed correctly (they were inverted in the original). - In Figure 4.79, in R#42 and R#43 explanation, "NY -> of dots..." has been changed to "NY -> number of dots..." - In List 4.9, in the line with the comment "YMMM command", 11010000 bitfield has been corrected to 11100000. - In Figure 4.84, "*" mark removed from the explanation of NX. - In Figure 4.85, in R#45 explanation, "select source memory" text has been corrected to "select destination memory". - In List 4.13, labels beginning with "LMMC" have been corrected to "LMCM". - In List 4.15, in the line with the comment "NY", the "OUT (C),H" instruction has been corrected to "OUT (C),L". - In section 6.5.9, the explanation of usage of the LINE command were mixed wih other text. It has been corrected. - In Figure 4.94, a line explaining the meaning of R#44 has been added. - In Figure 4.97, BX9 bit has been supressed in S#9 figure. - In Figure 4.99, a line explaining the meaning of R#44 has been added. - In Table 4.7, "CLR L" has been corrected to "CMR L". -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- CHAPTER 4 - VDP AND DISPLAY SCREEN (Part 6) 6. VDP COMMAND USAGE MSX-VIDEO can execute basic graphic operations, which are called VDP commands. These are done by accessing special harware and are available in the GRAPHIC 4 to GRAPHIC 7 modes. These graphic commands have been made easy to implement, requiring only that the necessary parameters be set in the proper registers before invoking them. This section describes these VDP commands. 6.1 Coordinate System of VDP Commands When VDP commands are executed, the location of the source and destination points are represented as (X, Y) coordinates as shown in Figure 4.72. When commands are executed, there is no page division and the entire 128K bytes VRAM is placed in a large coordinate system. Figure 4.72 Coordinate system of VRAM GRAPHIC 4 (SCREEN 5) GRAPHIC 5 (SCREEN 6) ------------------------------ 00000H ------------------------------ | (0,0) (255,0) | | | (0,0) (511,0) | | Page 0 | | | Page 0 | | (0,255) (255,255) | | | (0,255) (511,255) | |----------------------------| 08000H |----------------------------| | (0,256) (255,256) | | | (0,256) (511,256) | | Page 1 | | | Page 1 | | (0,511) (255,511) | | | (0,511) (511,511) | |----------------------------| 10000H |----------------------------| | (0,512) (255,512) | | | (0,512) (511,512) | | Page 2 | | | Page 2 | | (0,767) (255,767) | | | (0,767) (511,767) | |----------------------------| 18000H |----------------------------| | (0,768) (255,768) | | | (0,768) (511,768) | | Page 3 | | | Page 3 | | (0,1023) (255,1023) | | | (0,1023) (511,1023) | ------------------------------ 1FFFFH ------------------------------ GRAPHIC 7 (SCREEN 8) GRAPHIC 6 (SCREEN 7) ------------------------------ 00000H ------------------------------ | (0,0) (255,0) | | | (0,0) (511,0) | | Page 0 | | | Page 0 | | (0,255) (255,255) | | | (0,255) (511,255) | |----------------------------| 10000H |----------------------------| | (0,256) (255,256) | | | (0,256) (511,256) | | Page 1 | | | Page 1 | | (0,511) (255,511) | | | (0,511) (511,511) | ------------------------------ 1FFFFH ------------------------------ 6.2 VDP Commands There are 12 types of VDP commands which can be executed by MSX-VIDEO. These are shown in Table 4.5. Table 4.5 List of VDP commands ---------------------------------------------------------------------------- | Command name | Destination | Source | Units | Mnemonic | R#46 (4 hi ord) | |--------------+-------------+--------+-------+----------+-----------------| | | VRAM | CPU | bytes | HMMC | 1 1 1 1 | | High speed | VRAM | VRAM | bytes | YMMM | 1 1 1 0 | | move | VRAM | VRAM | bytes | HMMM | 1 1 0 1 | | | VRAM | VDP | bytes | HMMV | 1 1 0 0 | |--------------+-------------+--------+-------+----------+-----------------| | | VRAM | CPU | dots | LMMC | 1 0 1 1 | | Logical | CPU | VRAM | dots | LMCM | 1 0 1 0 | | move | VRAM | VRAM | dots | LMMM | 1 0 0 1 | | | VRAM | VDP | dots | LMMV | 1 0 0 0 | |--------------+-------------+--------+-------+----------+-----------------| | Line | VRAM | VDP | dots | LINE | 0 1 1 1 | |--------------+-------------+--------+-------+----------+-----------------| | Search | VRAM | VDP | dots | SRCH | 0 1 1 0 | |--------------+-------------+--------+-------+----------+-----------------| | Pset | VRAM | VDP | dots | PSET | 0 1 0 1 | |--------------+-------------+--------+-------+----------+-----------------| | Point | VDP | VRAM | dots | POINT | 0 1 0 0 | |--------------+-------------+--------+-------+----------+-----------------| | | ---- | ---- | ----- | ---- | 0 0 1 1 | | Reserved | ---- | ---- | ----- | ---- | 0 0 1 0 | | | ---- | ---- | ----- | ---- | 0 0 0 1 | |--------------+-------------+--------+-------+----------+-----------------| | Stop | ---- | ---- | ----- | ---- | 0 0 0 0 | ---------------------------------------------------------------------------- * When data is written in R#46 (Command register), MSX-VIDEO begins to execute the command after setting 1 to bit 0 (CE/Command Execute) of the status register S#2. Necessary parameters should be set in register R#32 to R#45 before the command is executed. * When the execution of the command ends, CE becomes 0. * To stop the execution of the command, execute STOP command. * Actions of the commands are guaranteed only in the bitmap modes (GRAPHIC 4 to GRAPHIC 7). 6.3 Logical Operations When commands are executed, various logical operations can be done between data in VRAM and the specified data. Each operation will be done according to the rules listed in Table 4.6. In the table, SC represents the source color and DC represents the destination colour. IMP, AND, OR, EOR and NOT write the result of each operation to the destination. In operations whose names are preceded by "T", dots which correspond with SC=0 are not the objects of the operations and remains as DC. Using these operations enables only colour portions of two figures to be overlapped, so they are especially effective for animations. List 4.7 shows an example of these operations. Table 4.6 List of logical operations ------------------------------------------------------------------------- | Logical name | |L03 L02 L01 L00| |--------------+----------------------------------------+---------------| | | | | | IMP | DC=SC | 0 0 0 0 | | | | | | AND | DC=SCxDC | 0 0 0 1 | | | | | | OR | DC=SC+DC | 0 0 1 0 | | | __ __ | | | EOR | DC=SCxDC+SCxDC | 0 0 1 1 | | | __ | | | NOT | DC=SC | 0 1 0 0 | | | | | | ---- | | 0 1 0 1 | | | | | | ---- | | 0 1 1 0 | | | | | | ---- | | 0 1 1 1 | | | | | |--------------+----------------------------------------+---------------| | | | | | TIMP | if SC=0 then DC=DC else DC=SC | 1 0 0 0 | | | | | | TAND | if SC=0 then DC=DC else DC=SCxDC | 1 0 0 1 | | | | | | TOR | if SC=0 then DC=DC else DC=SC+DC | 1 0 1 0 | | | __ __ | | | TEOR | if SC=0 then DC=DC else DC=SCxDC+SCxDC | 1 0 1 1 | | | __ | | | TNOT | if SC=0 then DC=DC else DC=SC | 1 1 0 0 | | | | | | ---- | | 1 1 0 1 | | | | | | ---- | | 1 1 1 0 | | | | | | ---- | | 1 1 1 1 | | | | | ------------------------------------------------------------------------- * SC = Source colour code * DC = Destination colour code * EOR = Exclusive OR List 4.7 Example of the logical operation with T ========================================================================= 1000 '*********************************************************** 1010 ' List 4.7 logical operation with T 1020 '*********************************************************** 1030 ' 1040 SCREEN8 : COLOR 15,0,0 : CLS 1050 DIM A%(3587) 1060 ' 1070 LINE (50,50)-(60,100),48,8 : PAINT (51,51),156,48 1080 CIRCLE (55,30),30,255 : PAINT (55,30),240,255 1090 COPY(20,0)-(90,100) TO A% 1100 CLS 1110 ' 1120 R=RND(-TIME) 1130 FOR Y=0 TO 100 STEP 3 1140 X=INT(RND(1)*186) 1150 COPY A% TO (X,Y),,TPSET 1160 NEXT 1170 ' 1180 GOTO 1180 ========================================================================= 6.4 Area Specification AREA-MOVE commands are for transferring screen data inside areas surrounded by a rectangle. The area to be transferred is specified by one vertex and the length of each side of the rectangle as shown in Figure 4.73. SX and SY represent the basic point of the rectangle to be transferred and NX and NY represent the lengt of each side in dots. The two bits, DIX and DIY, are for the direction of transferring data (the meaning of DIX and DIY depends on the type of command). The point where the area is to be transferred is specified in DX and DY. Figure 4.73 Area specification ---------------------------------------------------------------- | | | (SX,SY) | | x----------------- --> | | | | DIX | | | | | | | | | | | | | | ------------------ --+ | | | DIY | | | V | | | | (DX,DY) | | +-> x----------------- | | | | | | | | | | | | | | | | | | ------------------ | | | ---------------------------------------------------------------- 6.5 Use of Each Command Commands are clasified into three types, high-speed transfer commands, logical transfer commands, and drawing commands. This section describes the commands and their use. 6.5.1 HMMC (CPU -> VRAM high-speed transfer) Data is transferred into the specified area of VRAM from the CPU (see Figure 4.74). Logical operations cannot be specified. Data is transferred in bytes in high-speed transfer commands such as HMMC. Note that the low order bit of the X-coordinate is not referred to in GRAPHIC 4, or 6 modes. The two low order bits are not referred to in GRAPHIC 5 mode (see Figure 4.75). Set the parameters as shown in Figure 4.76 to the appropriate registers. At this point, write only the first byte of data to be transferred from the CPU in R#44. Writing the command code F0H in R#46 causes the command to be executed, and UMSX-VIDEO receives data from R#44 and writes it to VRAM, then waits for data from the CPU. The CPU writes data after the second byte in R#44. Note that data should be transferred after MSX-VIDEO can receive data (in the case that TR bit is "1"), referring to TR bit of S#2. When the CE bit of S#2 is "0", this means that all data has been transferred (see figure 4.77). List 4.8 shows an example of using HMMC. Figure 4.74 Action of HMMC command VRAM or expansion RAM --------------------------------------------------- | | MSX-VIDEO CPU | | ------- ------- | (DX,DY) | | | | | | x------------------------ --> DIX | | | | | | | NX | | | | | | | | NY |<----------------+----| |-----| | | | | | | | | | | ------------------------- | | | | | | | DIY | | | | | | V | | | | | | | ------- ------- | | --------------------------------------------------- MXD: select the destination memory 0 = VRAM, 1 = expansion RAM NX: number of dots to be transferred in X direction (0 to 511)* NY: number of dots to be transferred in Y direction (0 to 1023) DIX: direction of NX from the origin 0 = right, 1 = left DIY: direction of NY from the origin 0 = below, 1 = above DX: destination origin X-coordinate (0 to 511)* DY: destination origin Y-coordinate (0 to 1023) CLR (R#44:Colour register): 1st byte of data to be transferred * The one low-order bit for GRAPHIC 4 and 6 modes, or two low-order bits for GRAPHIC 5 mode of the DX and NX registers are ignored. Figure 4.75 Dots not to be referred to MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- GRAPHIC 4 | : : : | : : : | ----------------------------------------- (1) (2) Since 1 VRAM byte represents 2 dots, 1 low order bit of X-coordinate is not referred to. MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- GRAPHIC 5 | : | : | : | : | ----------------------------------------- (1) (2) (3) (4) Since 1 VRAM byte represents 4 dots, 2 low order bits of X-coordinate are not referred to. MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- GRAPHIC 6 | : : : | : : : | ----------------------------------------- (1) (2) Since 1 VRAM byte represents 2 dots, 1 low order bit of X-coordinate is not referred to. Figure 4.76 Register settings of HMMC command > HMMC register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| ----------------------------------------- DX ---+ R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| | ----------------------------------------- | | destination origin ----------------------------------------- | R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| | ----------------------------------------- DY ---+ R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in ----------------------------------------- NX ---> X direction to be R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in ----------------------------------------- NY ---> Y direction to be R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred ----------------------------------------- ----------------------------------------- --+d R#44 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |a ----------------------------------------- |t | | | |a +-------------------+-------------------+ | X=2N X=2N+1 (N=0, 1, ..., 127) |t |o ----------------------------------------- | | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 5) |b ----------------------------------------- |e | | | | | | +---------+---------+---------+---------+ |t X=4N X=4N+1 X=4N+2 X=4N+3 (N=0, 1, ..., 127) |r |a ----------------------------------------- |n | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |s ----------------------------------------- --+f. 1 byte per dot ----------------------------------------- R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register) ----------------------------------------- | | direction (X) | | | +-> direction (Y) | +-----------> select destination memory > HMMC command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 1 | 1 | 1 | 1 | -- | -- | -- | -- | CMR ----------------------------------------- Figure 4.77 HMMC command execution flow chart /-------------------\ | HMMC start | \-------------------/ | --------------------- | register setup | --------------------- | --------------------- | command execution | --------------------- | +---------------->| | | | --------------------------- | | Read status register #2 | | --------------------------- | | | //////////+\\\\\\\\\\ Yes (CE bit = 0) | | command end? |-------------------+ | \\\\\\\\\\+////////// | | | No (CE bit = 1) | | //////////+\\\\\\\\\\ | |<------| transfer? | | | No \\\\\\\\\\+////////// | | (TR bit=0) | Yes (TR bit = 1) | | --------------------- | | | transfer data | | | --------------------- | | | | +-----------------+ | | +-----------------------------+ | V /--------------------\ | HMMC end | \--------------------/ List 4.8 Example of HMMC command execution ========================================================================= ;**************************************************************** ; List 4.8 HMMC sample ; to use, set H, L, D, E, IX and go ; RAM (IX) ---> VRAM (H,L)-(D,E) ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- HMMC: DI ;disable interrupt CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,36 OUT (C),A LD A,17+80H OUT (C),A ;R#17 := 36 INC C INC C ;C := PORT#3's address XOR A OUT (C),H ;DX OUT (C),A OUT (C),L ;DY OUT (C),A LD A,H ;make NX and DIX SUB A LD D,00000100B JR NC,HMMC1 LD D,00000000B NEG HMMC1: LD H,A ;H := NX , D := DIX LD A,L SUB A LD E,00001000B JR NC,HMMC2 LD E,00000000B NEG HMMC2: LD L,A ;L := NY , E := DIY XOR A OUT (C),H ;NX OUT (C),A OUT (C),L ;NY OUT (C),A LD H,(IX+0) OUT (C),H ;first DATA LD A,D OR E OUT (C),A ;DIX and DIY LD A,0F0H OUT (C),A ;HMMC command LD A,(WRVDP) LD C,A ;C := PORT#1's address INC C LD A,44+80H OUT (C),A LD A,17+80H OUT (C),A INC C INC C LOOP: LD A,2 CALL GET.STATUS BIT 0,A ;check CE bit JR Z,EXIT BIT 7,A ;check TR bit JR Z,LOOP INC IX LD A,(IX+0) OUT (C),A JR LOOP EXIT: LD A,0 CALL GET.STATUS ;when exit, you must select S#0 EI RET GET.STATUS: ;read status register specified by A PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: ;wait VDP ready LD A,2 CALL GET.STATUS AND 1 JR NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.2 YMMM (high-speed transfer between VRAM in Y direction) Data from a specified VRAM area is transferred into another area in VRAM. Note that transfers using this command can only be done in the Y direction (see Figure 4.78). After setting the data as shown in Figure 4.79 in the proper registers, writing command code E0H in R#46 causes the command to be executed. When the CE bit of S#2 is "1", it indicates that the command is currently being executed. List 4.9 shows an example of using YMMM. Figure 4.78 Actions of YMMM command VRAM or expansion RAM --------------------------------------------------- | | | (DX,DY) | | x------------------------| | | | | | | | | | | -------------------------| | ^ | | | | | | | | (DX,SY) | | x------------------------| --> DIX | | | | | NY | | | | | -------------------------| | | DIY | | V | --------------------------------------------------- MXD: select the destination memory 0 = VRAM, 1 = expansion RAM SY: source origin Y-coordinate (0 to 1023) NY: number of dots to be transferred in Y direction (0 to 1023) DIX: set which to be transferred, to te right end or to the left end of the screen from the source origin 0 = right, 1 = left DIY: direction of NY from the origin 0 = below, 1 = above DX: destination origin X-coordinate (0 to 511)* DY: destination origin Y-coordinate (0 to 1023) * The one low-order bit for GRAPHIC 4 and 6 modes, or two low-order bits for GRAPHIC 5 mode of the DX register are ignored. Figure 4.79 Register settings of YMMM command > YMMM register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| ----------------------------------------- SY --> source origin R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8| ----------------------------------------- ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| ----------------------------------------- DX --> destination and R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| source origin ----------------------------------------- ----------------------------------------- R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| ----------------------------------------- DY --> destination origin R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| number of dots to ----------------------------------------- NY ---> be transferred in R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| Y direction ----------------------------------------- ----------------------------------------- R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register) ----------------------------------------- | | direction (X) | | | +-> direction (Y) | +-----------> select destination memory > YMMM command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 1 | 1 | 1 | 0 | -- | -- | -- | -- | CMR ----------------------------------------- List 4.9 Example of YMMM command execution ========================================================================= ;**************************************************************** ; List 4.9 YMMM sample ; to use, set L, E, B, C, D(bit 2) and go ; VRAM (B,L)-(*,E) ---> VRAM (B,C) ; DIX must be set in D(bit 2) ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- YMMM: DI ;disable interrupt PUSH BC ;save destination CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,34 OUT (C),A LD A,17+80H OUT (C),A ;R#17 := 34 INC C INC C ;C := PORT#3's address XOR A OUT (C),L ;SY OUT (C),A LD A,L ;make NY and DIY SUB A LD E,00001000B JP NC,YMMM1 LD E,00000000B NEG YMMM1: LD L,A ;L := NY , D := DIY LD A,D OR E POP DE ;restore DX,DY PUSH AF ;save DIX,DIY XOR A OUT (C),D ;DX OUT (C),A OUT (C),E ;DY OUT (C),A OUT (C),A ;dummy OUT (C),A ;dummy OUT (C),L ;NY OUT (C),A OUT (C),A ;dummy POP AF OUT (C),A ;DIX and DIY LD A,11100000B ;YMMM command OUT (C),A EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.3 HMMM (high-speed transfer between VRAM) Data of specified VRAM area is transferred into another area in VRAM (see Figure 4.80). After setting the parameters as shown in Figure 4.81, writing D0H in R#46 causes the command to be executed. While the command is being executed, CE bit of S#2 is "1". List 4.10 shows an example of using HMMM. Figure 4.80 Actions of HMMM command VRAM or expansion RAM ---------------------------------------------------------------- | | | (SX,SY) | | ------------------ --> | | | NX | DIX | | | | | | | NY | | | | | | | ------------------ --+ | | | DIY | | | V | | | | (DX,DY) | | +-> ------------------ | | | | | | | | | | | | | | | | | | ------------------ | | | ---------------------------------------------------------------- MXS: select the source memory 0 = VRAM, 1 = expansion RAM MXD: select the destination memory 0 = VRAM, 1 = expansion RAM SX: source origin X-coordinate (0 to 511)* SY: source origin Y-coordinate (0 to 1023) NX: number of dots to be transferred in X direction (0 to 511)* NY: number of dots to be transferred in Y direction (0 to 1023) DIX: direction of NX from the origin 0 = right, 1 = left DIY: direction of NY from the origin 0 = below, 1 = above DX: destination origin X-coordinate (0 to 511)* DY: destination origin Y-coordinate (0 to 1023) * The one low-order bit for GRAPHIC 4 and 6 modes, or two low-order bits for GRAPHIC 5 mode of the SX, DX, and NX register are ignored. Figure 4.81 Register settings of HMMM command > HMMM register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0| |----+----+----+----+----+----+----+----| SX ---+ R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| | ----------------------------------------- | | source origin ----------------------------------------- | R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| | |----+----+----+----+----+----+----+----| SY ---+ R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8| ----------------------------------------- ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| |----+----+----+----+----+----+----+----| DX ---+ R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| | ----------------------------------------- | | destination origin ----------------------------------------- | R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| | |----+----+----+----+----+----+----+----| DY ---+ R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in |----+----+----+----+----+----+----+----| NX ---> X direction to be R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in |----+----+----+----+----+----+----+----| NY ---> Y direction to be R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred ----------------------------------------- ----------------------------------------- R#45 | 0 | -- | MXD| MXS| DIY| DIX| -- | -- | ARG (Argument register) ----------------------------------------- | | | direction (X) | | | | | +-> direction (Y) | | | +------> select source memory | +-----------> select destination memory > HMMM command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 1 | 1 | 0 | 1 | -- | -- | -- | -- | CMR ----------------------------------------- List 4.10 Example of HMMM command execution ========================================================================= ;**************************************************************** ; List 4.10 HMMM sample ; to use, set H, L, D, E, B, C and go ; VRAM (H,L)-(D,E) ---> VRAM (B,C) ; DIX must be set in D(bit 2) ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- HMMM: DI ;disable interrupt PUSH BC ;save destination CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,32 OUT (C),A LD A,80H+17 OUT (C),A ;R#17 := 32 INC C INC C ;C := PORT#3's address XOR A OUT (C),H ;SX OUT (C),A OUT (C),L ;SY OUT (C),A LD A,H ;make NX and DIX SUB A LD D,00000100B JP NC,HMMM1 LD D,00000000B NEG HMMM1: LD H,A ;H := NX , D := DIX LD A,L ;make NY and DIY SUB A LD E,00001000B JP NC,HMMM2 LD E,00000000B NEG HMMM2: LD L,A ;L := NY , E := DIY LD A,D OR E POP DE ;restore DX,DY PUSH AF ;save DIX,DIY XOR A OUT (C),D ;DX OUT (C),A OUT (C),E ;DY OUT (C),A OUT (C),H ;NX OUT (C),A OUT (C),L ;NY OUT (C),A OUT (C),A ;dummy POP AF OUT (C),A ;DIX and DIY LD A,11010000B ;HMMM command OUT (C),A EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.4 HMMV (painting the rectangle in high speed) Each byte of data in the specified VRAM area is painted by the specified colour code (see Figure 4.82) After setting the parameters as shown in Figure 4.83, writing C0H in R#46 causes the command to be executed. While the command is being executed, the CE bit of S#2 is 1. List 4.11 shows an example of using HMMV. Figure 4.82 Actions of HMMC command VRAM or expansion RAM --------------------------------------------------- | | MSX-VIDEO | | ------- | (DX,DY) | | | | x------------------------ --> DIX | | | | | NX | | | | | | NY |<----------------+----| | | | | | | | | ------------------------- | | | | | DIY | | | | V | | | | | ------- | | --------------------------------------------------- MXD: select memory 0 = VRAM, 1 = expansion RAM NX: number of dots to be painted in X direction (0 to 511)* NY: number of dots to be painted in Y direction (0 to 1023) DIX: direction of NX from the origin 0 = right, 1 = left DIY: direction of NY from the origin 0 = below, 1 = above DX: origin X-coordinate (0 to 511)* DY: origin Y-coordinate (0 to 1023) CLR (R#44:Colour register): Painted data * The one low-order bit for GRAPHIC 4 and 6 modes, or two low-order bits for GRAPHIC 5 mode of the DX and NX registers are ignored. Figure 4.83 Register settings of HMMV command > HMMV register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| |----+----+----+----+----+----+----+----| DX ---+ R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| | ----------------------------------------- | | origin ----------------------------------------- | R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| | |----+----+----+----+----+----+----+----| DY ---+ R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| number of dots in |----+----+----+----+----+----+----+----| NX ---> X direction to R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| be painted ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| number of dots in |----+----+----+----+----+----+----+----| NY ---> Y direction to R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| be painted ----------------------------------------- ----------------------------------------- --+d R#44 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |a ----------------------------------------- |t | | | |a +-------------------+-------------------+ | X=2N X=2N+1 (N=0, 1, ..., 127) |t |o ----------------------------------------- | | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 5) |b ----------------------------------------- |e | | | | | | +---------+---------+---------+---------+ |p X=4N X=4N+1 X=4N+2 X=4N+3 (N=0, 1, ..., 127) |a |i ----------------------------------------- |n | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |t ----------------------------------------- --+e 1 byte / dot d ----------------------------------------- R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register) ----------------------------------------- | | painting direction (X) | | | +-> painting direction (Y) | +-----------> memory selection > HMMV command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 1 | 1 | 0 | 0 | -- | -- | -- | -- | CMR ----------------------------------------- List 4.11 Example of HMMV command execution ========================================================================= ;**************************************************************** ; List 4.11 HMMV sample ; to use, set H, L, D, E, B and go ; B ---> VRAM (H,L)-(D,E) fill ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- HMMV: DI ;disable interrupt CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,36 OUT (C),A LD A,80H+17 OUT (C),A ;R#17 := 36 INC C INC C ;C := PORT#3's address XOR A OUT (C),H ;DX OUT (C),A OUT (C),L ;DY OUT (C),A LD A,H ;make NX and DIX SUB A LD D,00000100B JP NC,HMMV1 LD D,00000000B NEG HMMV1: LD H,A ;H := NX LD A,L ;make NY and DIY SUB A LD E,00001000B JP NC,HMMV2 LD E,00000000B NEG HMMV2: OUT (C),H LD H,A ;H := NY XOR A OUT (C),A OUT (C),H OUT (C),A OUT (C),B ;fill data XOR A OR D OR E OUT (C),A ;DIX and DIY LD A,11000000B ;HMMV command OUT (C),A EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.5 LMMC (CPU -> VRAM logical transfer) Data is transferred from the CPU to thespecified VRAM area in dots (see Figure 4.84). Logical operations with the source can be specified. In the logical transfer commands, such as LMMC, data is transfered in dots and one byte is required for the information of one pixel in all screen modes. After setting the data as shown in Figure 4.85, write command code B0H in R#46. At this point, logical operations can be specified by using the 4 low order bits of the command register. Data is transferred with reference to the TR and CE bit of S#2, as in HMMC (see Figure 4.86). List 4.12 shows an example of using LMMC. Figure 4.84 Action of LMMC command VRAM or expansion RAM --------------------------------------------------- | | MSX-VIDEO CPU | | ------- ------- | (DX,DY) | | | | | | x------------------------ --> DIX | | | | | | | NX | | | | | | | | NY |<----------------+----| |-----| | | | | | | | | | | ------------------------- | | | | | | | DIY | | | | | | V | | | | | | | ------- ------- | | --------------------------------------------------- MXD: select destination memory 0 = VRAM, 1 = expansion RAM NX: number of dots to be transferred in X direction (0 to 511) NY: number of dots to be transferred in Y direction (0 to 1023) DIX: direction of NX from the origin 0 = right, 1 = left DIY: direction of NY from the origin 0 = below, 1 = above DX: destination origin X-coordinate (0 to 511) DY: destination origin Y-coordinate (0 to 1023) CLR (R#44:Colour register): 1st byte of data to be transferred Figure 4.85 Register settings of LMMC command > LMMC register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| |----+----+----+----+----+----+----+----| DX ---+ R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| | ----------------------------------------- | | destination origin ----------------------------------------- | R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| | |----+----+----+----+----+----+----+----| DY ---+ R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in |----+----+----+----+----+----+----+----| NX ---> X direction to be R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in |----+----+----+----+----+----+----+----| NY ---> Y direction to be R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred ----------------------------------------- ----------------------------------------- --+ R#44 | -- | -- | -- | -- | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) | ----------------------------------------- | | data ----------------------------------------- | to be | -- | -- | -- | -- | -- | -- | CR1| CR0| CLR (GRAPHIC 5) | trans- ----------------------------------------- | ferred | ----------------------------------------- | | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) | ----------------------------------------- --+ ----------------------------------------- R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register) ----------------------------------------- | | direction (X) | | | +-> direction (Y) | +-----------> select destination memory > LMMC command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 1 | 0 | 1 | 1 | L03| L02| L01| L00| CMR ----------------------------------------- | | +-------------------+ Logical operation Figure 4.86 LMMC command execution flow chart /-------------------\ | LMMC start | \-------------------/ | --------------------- | register setup | --------------------- | --------------------- | command execution | --------------------- | +---------------->| | | | --------------------------- | | read status register #2 | | --------------------------- | | | //////////+\\\\\\\\\\ Yes (CE bit = 0) | | command end? |-------------------+ | \\\\\\\\\\+////////// | | | No (CE bit = 1) | | //////////+\\\\\\\\\\ | |<------| transfer? | | | No \\\\\\\\\\+////////// | | (TR bit=0) | Yes (TR bit = 1) | | --------------------- | | | transfer data | | | --------------------- | | | | +-----------------+ | | +-----------------------------+ | V /--------------------\ | LMMC end | \--------------------/ List 4.12 Example of LMMC command execution ========================================================================= ;**************************************************************** ; List 4.12 LMMC sample ; to use, set H, L, D, E, IX, A and go ; RAM (IX) ---> VRAM (H,L)-(D,E) (logi-OP : A) ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- LMMC: DI ;disable interrupt LD B,A ;B := LOGICAL OPERATION CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,36 OUT (C),A LD A,80H+17 OUT (C),A ;R#17 := 36 INC C INC C ;C := PORT#3's address XOR A OUT (C),H ;DX OUT (C),A OUT (C),L ;DY OUT (C),A LD A,H ;make NX and DIX SUB A LD D,00000100B JR NC,LMMC1 LD D,00000000B NEG LMMC1: LD H,A ;H := NX , D := DIX LD A,L SUB A LD E,00001000B JR NC,LMMC2 LD E,00000000B NEG LMMC2: LD L,A ;L := NY , E := DIY XOR A OUT (C),H ;NX OUT (C),A OUT (C),L ;NY OUT (C),A LD A,(IX+0) OUT (C),A ;first DATA LD A,D OR E OUT (C),A ;DIX and DIY LD A,B ;A := LOGICAL OPERATION OR 10110000B ;LMMC command OUT (C),A DEC C DEC C LOOP: LD A,2 CALL GET.STATUS BIT 0,A ;check CE bit JP Z,EXIT BIT 7,A ;check TR bit JP Z,LOOP INC IX LD A,(IX+0) OUT (C),A JR LOOP EXIT: LD A,0 CALL GET.STATUS EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JR NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.6 LMCM (VRAM - CPU logical transfer) Data is transferred from the specified VRAM area to CPU in dots (see Figure 4.87) After setting the parameters as shown in Figure 4.88, writing command code A0H in R#46 causes the command to be executed and data to be transferred from MSX-VIDEO. The CPU refers to the TR bit of S#2 and, since data of MSX-VIDEO has been prepared if this bit is "1", the CPU reads data from S#7. When CE bit of S#2 is "0", data comes to the end (see Figure 4.89). List 4.13 shows an example of using LMCM. Figure 4.87 Action of LMCM command VRAM or expansion RAM --------------------------------------------------- | | MSX-VIDEO CPU | | ------- ------- | (SX,SY) | | | | | | x------------------------ --> DIX | | | | | | | NX | | | | | | | | NY |-----------------+--->| |---->| | | | | | | | | | | ------------------------- | | | | | | | DIY | | | | | | V | | | | | | | ------- ------- | | --------------------------------------------------- MXS: select source memory 0 = VRAM, 1 = expansion RAM SX: source origin X-coordinate (0 to 511) SY: source origin Y-coordinate (0 to 1023) NX: number of dots to be transferred in X direction (0 to 511) NY: number of dots to be transferred in Y direction (0 to 1023) DIX: direction of NX from the origin 0 = right, 1 = left DIY: direction of NY from the origin 0 = below, 1 = above Figure 4.88 Register settings of LMCM command > LMCM register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0| |----+----+----+----+----+----+----+----| SX ---+ R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| | ----------------------------------------- | | source origin ----------------------------------------- | R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| | |----+----+----+----+----+----+----+----| SY ---+ R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8| ----------------------------------------- ----------------------------------------- R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in |----+----+----+----+----+----+----+----| NX ---> X direction to be R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in |----+----+----+----+----+----+----+----| NY ---> Y direction to be R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred ----------------------------------------- ----------------------------------------- R#45 | 0 | -- | -- | MXS| DIY| DIX| -- | -- | ARG (Argument register) ----------------------------------------- | | direction (X) | | | +-> direction (Y) | +------> select source memory > LMCM command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 1 | 0 | 1 | 0 | -- | -- | -- | -- | CMR ----------------------------------------- ----------------------------------------- S#7 | 0 | 0 | 0 | 0 | C3 | C2 | C1 | C0 | status register(GRAPHIC4,6) ----------------------------------------- ----------------------------------------- S#7 | 0 | 0 | 0 | 0 | 0 | 0 | C1 | C0 | status register (GRAPHIC 5) ----------------------------------------- ----------------------------------------- S#7 | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 | status register (GRAPHIC 7) ----------------------------------------- Figure 4.89 LMCM command execution flow chart /-------------------\ | LMCM start | \-------------------/ | --------------------- | register setup | --------------------- | --------------------- | command execution | --------------------- | +---------------->| | | | --------------------------- | | read status register #2 | | --------------------------- | | | //////////+\\\\\\\\\\ No (TR bit = 0) | | data prepared? |-------------------+ | \\\\\\\\\\+////////// | | | Yes (TR bit = 1) | | | | | --------------------------- | | | read status register #7 | | | --------------------------- | | | | | |<----------------------------+ | | | //////////+\\\\\\\\\\ +-------| command end? | No \\\\\\\\\\+////////// (CE bit=1) | Yes (CE bit = 0) | V /--------------------\ | LMCM end | \--------------------/ * Note 1: Read status register #7 in "register setup", since TR bit should be reset before the command execution. * Note 2: Though last data was set in register #7 and TR bit was 1, the command would end inside of the MSX-VIDEO and CE would be zero. List 4.13 Example of LMCM command execution ========================================================================= ;**************************************************************** ; List 4.13 LMCM sample ; to use, set H, L, D, E, IX, A and go ; VRAM (H,L)-(D,E) ---> RAM (IX) ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- LMCM: DI ;disable interrupt LD B,A ;B := LOGICAL OPERATION CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,32 OUT (C),A LD A,80H+17 OUT (C),A ;R#17 := 32 INC C INC C ;C := PORT#3's address XOR A OUT (C),H ;SX OUT (C),A OUT (C),L ;SY OUT (C),A OUT (C),A ;dummy OUT (C),A ;dummy OUT (C),A ;dummy OUT (C),A ;dummy LD A,H ;make NX and DIX SUB A LD D,00000100B JR NC,LMCM1 LD D,00000000B NEG LMCM1: LD H,A ;H := NX , D := DIX LD A,L SUB A LD E,00001000B JR NC,LMCM2 LD E,00000000B NEG LMCM2: LD L,A ;L := NY , E := DIY XOR A OUT (C),H ;NX OUT (C),A OUT (C),L ;NY OUT (C),A LD A,(IX+0) OUT (C),A ;dummy LD A,D OR E OUT (C),A ;DIX and DIY LD A,7 CALL GET.STATUS LD A,B ;A := LOGICAL OPERATION OR 10100000B ;LMCM command OUT (C),A LD A,(RDVDP) LD C,A ;C := PORT#1's address LOOP: LD A,2 CALL GET.STATUS BIT 0,A ;check CE bit JP Z,EXIT BIT 7,A ;check TR bit JP Z,LOOP LD A,7 CALL GET.STATUS LD (IX+0),A INC IX JR LOOP EXIT: LD A,0 CALL GET.STATUS EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JR NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.7. LMMM (VRAM->VRAM logical transfer) Data of the specified VRAM area is transferred into another VRAM area in dots (see figure 4.9) After setting the parameters as shown in Figure 4.91, writing command code 9XH (X means a logical operation) in R#46 causes the command to be executed. While the CE bit of S#2 is "1", the command is being executed. List 4.14 shows an example of using LMMM. Figure 4.90 Actions of LMMM command VRAM or expansion RAM ---------------------------------------------------------------- | | | (SX,SY) | | ------------------ --> | | | NX | DIX | | | | | | | NY | | | | | | | ------------------ --+ | | | DIY | | | V | | | | (DX,DY) | | +-> ------------------ | | | | | | | | | | | | | | | | | | ------------------ | | | ---------------------------------------------------------------- MXS: select the source memory 0 = VRAM, 1 = expansion RAM MXD: select the destination memory 0 = VRAM, 1 = expansion RAM SX: source origin X-coordinate (0 to 511) SY: source origin Y-coordinate (0 to 1023) NX: number of dots to be transferred in X direction (0 to 511) NY: number of dots to be transferred in Y direction (0 to 1023) DIX: direction of NX from the origin 0 = right, 1 = left DIY: direction of NY from the origin 0 = below, 1 = above DX: destination origin X-coordinate (0 to 511) DY: destination origin Y-coordinate (0 to 1023) Figure 4.91 Register settings of LMMM command > LMMM register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0| |----+----+----+----+----+----+----+----| SX ---+ R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| | ----------------------------------------- | | source origin ----------------------------------------- | R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| | |----+----+----+----+----+----+----+----| SY ---+ R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8| ----------------------------------------- ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| |----+----+----+----+----+----+----+----| DX ---+ R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| | ----------------------------------------- | | destination origin ----------------------------------------- | R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| | |----+----+----+----+----+----+----+----| DY ---+ R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in |----+----+----+----+----+----+----+----| NX ---> X direction to be R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in |----+----+----+----+----+----+----+----| NY ---> Y direction to be R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred ----------------------------------------- ----------------------------------------- R#45 | 0 | -- | MXD| MXS| DIY| DIX| -- | -- | ARG (Argument register) ----------------------------------------- | | | direction (X) | | | | | +-> direction (Y) | | | +------> select source memory | +-----------> select destination memory > LMMM command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 1 | 0 | 0 | 1 | L03| L02| L01| L00| CMR ----------------------------------------- | | +-------------------+ Logical operation List 4.14 Example of LMMM command execution ========================================================================= ;**************************************************************** ; List 4.14 LMMM sample ; to use, set H, L, D, E, B, C, A and go ; VRAM (H,L)-(D,E) ---> VRAM (B,C) (logi-OP : A) ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- LMMM: DI ;disable interrupt PUSH AF ]save LOGICAL OPERATION PUSH BC ;save DESTINATION CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,32 OUT (C),A LD A,80H+17 OUT (C),A ;R#17 := 32 INC C INC C ;C := PORT#3's address XOR A OUT (C),H ;SX OUT (C),A OUT (C),L ;SY OUT (C),A LD A,H ;make NX and DIX SUB A LD D,00000100B JP NC,LMMM1 LD D,00000000B NEG LMMM1: LD H,A ;H := NX , D := DIX LD A,L ;make NY and DIY SUB A LD E,00001000B JP NC,LMMM2 LD E,00000000B NEG LMMM2: LD L,A ;L := NY , E := DIY LD A,D OR E POP DE ;restore DX,DY PUSH AF ;save DIX,DIY XOR A OUT (C),D ;DX OUT (C),A OUT (C),E ;DY OUT (C),A OUT (C),H ;NX OUT (C),A OUT (C),L ;NY OUT (C),A OUT (C),A ;dummy POP AF OUT (C),A ;DIX and DIY POP AF ;A := LOGICAL OPERATION OR 10010000B ;LMMM command OUT (C),A EI RET GET.STATUS: . PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.8 LMMV (VRAM logical paint) The specified VRAM area is painted by the colour code in dots (see Figure 4.92). Logical operations between data in VRAM and the specified data are allowed. After setting the parameters as shown in Figure 4.93, writing command code 8Xh (X means a logical operation) in R#46 causes the command to be executed. While the CE bit of S#2 is "1", the command is being executed. List 4.15 shows an example of using LMMV. Figure 4.92 Actions of LMMV command VRAM or expansion RAM --------------------------------------------------- | | MSX-VIDEO | | ------- | (DX,DY) | | | | x------------------------ --> DIX | | | | | NX | | | | | | NY |<----------------+----| | | | | | | | | ------------------------- | | | | | DIY | | | | V | | | | | ------- | | --------------------------------------------------- MXD: select memory 0 = VRAM, 1 = expansion RAM NX: number of dots to be painted in X direction (0 to 511) NY: number of dots to be painted in Y direction (0 to 1023) DIX: direction of NX from the origin 0 = right, 1 = left DIY: direction of NY from the origin 0 = below, 1 = above DX: origin X-coordinate (0 to 511) DY: origin Y-coordinate (0 to 1023) CLR (R#44:Colour register): Painted data Figure 4.93 Register settings of LMMV command > LMMV register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| |----+----+----+----+----+----+----+----| DX ---+ R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| | ----------------------------------------- | | origin ----------------------------------------- | R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| | |----+----+----+----+----+----+----+----| DY ---+ R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| number of dots in |----+----+----+----+----+----+----+----| NX ---> X direction to R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| be painted ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| number of dots in |----+----+----+----+----+----+----+----| NY ---> Y direction to R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| be painted ----------------------------------------- ----------------------------------------- --+ R#44 | 0 | 0 | 0 | 0 | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |data ----------------------------------------- | |to ----------------------------------------- | | 0 | 0 | 0 | 0 | 0 | 0 | CR1| CR0| CLR (GRAPHIC 5) |be ----------------------------------------- | |tran ----------------------------------------- |sfe | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |rred ----------------------------------------- --+ ----------------------------------------- R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register) ----------------------------------------- | | painting direction (X) | | | +-> painting direction (Y) | +-----------> memory selection > LMMV command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 1 | 0 | 0 | 0 | L03| L03| L01| L00| CMR ----------------------------------------- | | +-------------------+ Logical operation List 4.15 Example of LMMV command execution ========================================================================= ;**************************************************************** ; List 4.15 LMMV sample ; to use, set H, L, D, E, B, A and go ; data B ---> fill VRAM (H,L)-(D,E) (logi-op : A) ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- LMMV: DI ;disable interrupt PUSH AF ;save LOGICAL OPERATION PUSH BC ;save FILL DATA CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,36 OUT (C),A LD A,80H+17 OUT (C),A ;R#17 := 36 INC C INC C ;C := PORT#3's address XOR A OUT (C),H ;DX OUT (C),A OUT (C),L ;DY OUT (C),A LD A,H ;make NX and DIX SUB A LD D,00000100B JP NC,LMMV1 LD D,00000000B NEG LMMV1: LD H,A ;H := NX , D := DIX LD A,L ;make NY and DIY SUB A LD E,00001000B JP NC,LMMV2 LD E,00000000B NEG LMMV2: LD L,A ;L := NY , E := DIY XOR A OUT (C),H ;NX OUT (C),A OUT (C),L ;NY OUT (C),A POP AF OUT (C),A ;FILL DATA LD A,D OR E OUT (C),A ;DIX and DIY POP AF ;restore LOGICAL OPERATION OR A,10000000B ;LMMV command OUT (C),A EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.9 LINE (drawing a line) Lines can be drawn between any coordinates in VRAM. The parameters to be specified include the (X,Y) coordinates of the starting point and the X and Y lengths in units to the ending point (see Figure 4.94). Logical operations between data in VRAM and the specified data are allowed. After setting the parameters as shown in Figure 4.94, writing command code 7XH (X means a logical operation) in R#46 causes the command to be executed. While the CE bit of S#2 is "1", the command is being executed. List 4.16 shows an example of using LINE. Figure 4.94 Actions of LINE command VRAM or expansion RAM --------------------------------------------------- | | | / : ^ | | / : | | | / : DIY | | / : | | / Min : | | / : | | / : | | / Maj : | | x................. -> DIX | | (DX,DY) | | | --------------------------------------------------- MXD: select memory 0 = VRAM, 1 = expansion RAM Maj: number of dots of major side (0 to 1023) Maj: number of dots of minor side (0 to 512) MAJ: 0 = The major side is parallel to X axis MAJ: 1 = The major side is parallel to Y axis, or the major side = the minor side DIX: direction of the end from the origin 0 = right, 1 = left DIY: direction of the end from the origin 0 = below, 1 = above DX: origin X-coordinate (0 to 511) DY: origin Y-coordinate (0 to 1023) CLR (R#44:Colour register): Line colour data Figure 4.95 Register settings of LINE command > LINE register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| |----+----+----+----+----+----+----+----| DX ---+ R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| | ----------------------------------------- | | origin ----------------------------------------- | R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| | |----+----+----+----+----+----+----+----| DY ---+ R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| number of dots |----+----+----+----+----+----+----+----| Maj (NX) -> of the major R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| side ----------------------------------------- ----------------------------------------- R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| number of dots |----+----+----+----+----+----+----+----| Min (NY) -> of the minor R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| side ----------------------------------------- ----------------------------------------- --+ R#44 | 0 | 0 | 0 | 0 | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) | ----------------------------------------- |co- |lour ----------------------------------------- | | 0 | 0 | 0 | 0 | 0 | 0 | CR1| CR0| CLR (GRAPHIC 5) |code ----------------------------------------- | |data ----------------------------------------- | | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) | ----------------------------------------- --+ ----------------------------------------- R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | MAJ| ARG (Argument register) ----------------------------------------- | | | major side selection | | V | | direction to the end (X) | | | +-> direction to the end (Y) | +-----------> memory selection > LINE command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 0 | 1 | 1 | 1 | L03| L03| L01| L00| CMR ----------------------------------------- | | +-------------------+ Logical operation List 4.16 Example of LINE command execution ========================================================================= ;**************************************************************** ; List 4.16 LINE sample ; to use, set H, L, D, E, B, A and go ; draw LINE (H,L)-(D,E) with color B, log-op A ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- LINE: DI ;disable interrupt PUSH AF ;save LOGICAL OPERATION PUSH BC ;save COLOR CALL WAIT.VDP ;wait end of command LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD A,36 OUT (C),A LD A,80H+17 OUT (C),A ;R#17 := 36 INC C INC C ;C := PORT#3's address XOR A OUT (C),H ;DX OUT (C),A OUT (C),L ;DY OUT (C),A LD A,H ;make DX and DIX SUB D LD D,00000100B JP NC,LINE1 LD D,00000000B NEG LINE1: LD H,A ;H := DX , D := DIX LD A,L ;make DY and DIY SUB E LD E,00001000B JP NC,LINE2 LD E,00000000B NEG LINE2: LD L,A ;L := DY , E := DIY CP H ;make Maj and Min JP C,LINE3 XOR A OUT (C),L ;long side OUT (C),A OUT (C),H ;short side OUT (C),A LD A,00000001B ;MAJ := 1 JP LINE4 LINE3: XOR A OUT (C),H ;NX OUT (C),A OUT (C),L ;NY OUT (C),A LD A,00000000B ;MAJ := 0 LINE4: OR D OR E ;A := DIX , DIY , MAJ POP HL ;H := COLOR OUT (C),H OUT (C),A POP AF ;A := LOGICAL OPERATION OR 01110000B OUT (C),A LD A,8FH OUT (C),A EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.10 SRCH (colour code search) SRCH searches for the existence of the specified colour from any coordinate on VRAM to the right or the left (see figure 4.96). This is very useful for paint routines. After setting the parameters as shown in Figure 4.97, writing 60H in R#46 causes the command to be executed. The command terminates when the objective colour is found or when it cannot be found after searching for it to the screen edge. While the CE bit of S#2 is "1", the command is being executed (see Figure 4.98). After the command ends, the objective colour code is stored in S#8 and S#9. List 4.17 shows an example of using SRCH. Figure 4.96 Actions of SRCH command VRAM or expansion RAM --------------------------------------------------- | | | | | | | | | (SX,SY) DIX | | x......................>x | | Border | | colour | | point | | | | | | | --------------------------------------------------- MXD: memory selection for the seacrh 0 = VRAM, 1 = expansion RAM SX: search origin X-coordinate (0 to 511) SY: search origin Y-coordinate (0 to 1023) DIX: direction for the search from the origin 0 = right, 1 = left EQ: 0 = ends the execution when the border colour is found 1 = ends the execution when the colour is found other than the border colour CLR (R#44:Colour register): border colour Figure 4.97 Register settings of SRCH command > SRCH register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0| |----+----+----+----+----+----+----+----| SX ---+ R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| | ----------------------------------------- | | search origin ----------------------------------------- | R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| | |----+----+----+----+----+----+----+----| SY ---+ R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8| ----------------------------------------- b ----------------------------------------- --+o R#44 | 0 | 0 | 0 | 0 | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |r ----------------------------------------- |d |e ----------------------------------------- |r | 0 | 0 | 0 | 0 | 0 | 0 | CR1| CR0| CLR (GRAPHIC 5) | ----------------------------------------- |c |o ----------------------------------------- |l | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |o ----------------------------------------- --+u r ----------------------------------------- R#45 | -- | -- | MXD| -- | -- | DIX| EQ | -- | ARG (Argument register) ----------------------------------------- | | the condition for terminating | | the execution | V | search direction (X) | +-----------> memory selection for the search > SRCH command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 0 | 1 | 1 | 0 | -- | -- | -- | -- | CMR ----------------------------------------- ----------------------------------------- S#2 | -- | -- | -- | BO | -- | -- | -- | CE | CMR ----------------------------------------- | when the command ends : 0 | +-------> when the border colour is found : 1 ----------------------------------------- S#8 | BX7| BX6| BX5| BX4| BX3| BX2| BX1| BX0| X-coordinate when the ----------------------------------------- border colour is found S#9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | BX8| ----------------------------------------- Figure 4.98 SRCH command execution flowchart /-------------------\ | SRCH start | \-------------------/ | --------------------- | register setup | --------------------- | --------------------- | command execution | --------------------- | +---------------->| | | | --------------------------- | | Read status register #2 | | --------------------------- | | | //////////+\\\\\\\\\\ +-------| command end? | No \\\\\\\\\\+////////// (CE bit = 1) | | Yes (CE bit = 0) | /////////////+\\\\\\\\\\\\\ +----| Is border colour found? | | \\\\\\\\\\\\\+///////////// | No | | (BO bit = 0) | Yes (BO bit = 1) | | | --------------------------- | | Read status register #8 | | --------------------------- | | | --------------------------- | | Read status register #2 | | --------------------------- | | +---------------->| | V /--------------------\ | SRCH end | \--------------------/ List 4.17 Example of SRCH command execution ========================================================================= ;**************************************************************** ; List 4.17 SRCH sample ; to use, set H, L, E, A as follows ; srch (x:H, y:L, color:E, arg(reg#45) : A) ; returns: Z (not found) ; NZ (A := X) ;**************************************************************** ; RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- SRCH: DI ;disable interrupt PUSH AF ;save arg CALL WAIT.VDP LD A,(WRVDP) LD C,A INC C ;C := PORT#1's address LD D,0 LD A,32+80H OUT (C),H OUT (C),A ;R#32 := H INC A OUT (C),D OUT (C),A ;R#33 := 0 INC A OUT (C),L OUT (C),A ;R#34 := L INC A OUT (C),D OUT (C),A ;R#35 := 0 LD A,44+80H OUT (C),E OUT (C),A ;R#44 := E INC A LD E,A POP AF ;A := ARG OUT (C),A OUT (C),E ;R#45 := A LD A,01100000B OUT (C),A INC E OUT (C),E ;R#46 := SRCH command LOOP: LD A,2 CALL GET.STATUS BIT 0,A JP NZ,LOOP LD E,A LD A,8 CALL GET.STATUS LD D,A LD A,9 CALL GET.STATUS LD A,D BIT 4,E EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= List 4.18 Simple PAINT routine using SRCH and LINE ========================================================================= ;**************************************************************** ; List 4.18 SRCH and LINE sample ; search color to right and left, ; then draw line between the two points ;**************************************************************** ; EXTRN SRCH EXTRN LINE Y EQU 0A800H X EQU 0A801H COL EQU 0A802H ARG EQU 0A803H PCOL EQU 0A804H ;----- program start ----- MAIN: LD (STK),SP LD SP,AREA LD HL,(Y) LD A,(COL) LD E,A LD A,(ARG) PUSH HL PUSH DE SET 2,A CALL SRCH POP DE POP HL JP NZ,S1 LD A,(X) DEC A S1: INC A PUSH AF LD A,(ARG) RES 2,A CALL SRCH JP NZ,S2 LD A,(X) INC A S2: DEC A LD D,A POP AF LD H,A LD A,(Y) LD L,A LD E,A LD A,(PCOL) LD B,A LD A,0 ;PSET CALL LINE LD SP,(STK) RET ;----- work area ----- STK: DS 2 DS 200 AREA: $ END ========================================================================= List 4.19 Example of the use of simple PAINT routine ========================================================================= 1000 '*********************************************** 1010 ' list 4.19 SRCH and LINE sample 1020 ' Operate cursor while holding down the space bar. 1030 '*********************************************** 1040 ' 1050 SCREEN 5 1060 FOR I=0 TO 50:LINE -(RND(1)*255,RND(1)*211),15:NEXT 1070 I=&HA000 :DEF USR=I 1080 READ A$ 1090 IF A$="END" THEN 1130 1100 POKE I,VAL("&H"+A$):I=I+1 1110 READ A$ 1120 GOTO 1090 1130 X=128:Y=100:COL=15:PCOL=2:ARG=0 1140 CURS=0 1150 A=STICK(0) 1160 CURS=(CURS+1) AND 1 1170 LINE (X-5,I)-(X+5,I),15,,XOR 1180 LINE (X,Y-5)-(X,Y+5),15,,XOR 1190 IF CURS=1 THEN 1290 1200 IF A=1 THEN Y=Y-1 1210 IF A=2 THEN Y=Y-1:X=X+1 1220 IF A=3 THEN X=X+1 1230 IF A=4 THEN X=X+1:Y=Y+1 1240 IF A=5 THEN Y=Y+1 1250 IF A=6 THEN Y=Y+1:X=X-1 1260 IF A=7 THEN X=X-1 1270 IF A=8 THEN X=X-1:Y=Y-1 1280 IF STRIG(9) THEN GOSUB 1300 1290 GOTO 1150 1300 POKE &HA800,Y 1310 POKE &HA801,X 1320 POKE &HA802,COL 1330 POKE &HA803,ARG 1340 POKE &HA804,PCOL 1350 A=USR(0) 1360 RETURN 1370 DATA ED,73,80,A8,31,4A,A9,2A,00,A8,3A,02 1380 DATA A8,5F,3A,03,A8,E5,D5,CB,D7,CD,AD 1390 DATA A0,D1,E1,C2,21,A0,3A,01,A8 1400 DATA 3D,3C,F5,3A,03,A8,CB,97,CD,AD,A0,C2 1410 DATA 32,A0,3A,01,AB,3C,3D,57,F1,67,3A 1420 DATA 00,A8,6F,5F,3A,04,A8,47,3E 1430 DATA 00,CD,49,A0,ED,7B,80,A8,C9,F3,F5,CD 1440 DATA 0D,A1,C5,3A,06,00,4F,0C,3E,24,ED 1450 DATA 79,3E,91,ED,79,0C,0C,AF,ED 1460 DATA 61,ED,79,ED,69,ED,79,7C,92,16,04,D2 1470 DATA 72,A0,16,00,ED,44,67,7D,93,1E,08 1480 DATA D2,7E,A0,1E,00,ED,44,BC,DA 1490 DATA 90,A0,ED,79,AF,ED,79,ED,61,ED,79,26 1500 DATA 01,C3,9C,A0,ED,61,67,AF,ED,79,ED 1510 DATA 61,ED,79,26,00,7C,B2,B3,E1 1520 DATA ED,61,ED,79,F1,E6,0F,F6,70,ED,79,FB 1530 DATA C9,F5,F3,CD,0D,A1,ED,4B,06,00,0C 1540 DATA 3E,A0,16,00,ED,61,ED,79,3C 1550 DATA ED,51,ED,79,3C,ED,69,ED,79,3C,ED,51 1560 DATA ED,79,3E,AC,ED,59,ED,79,3C,5F,F1 1570 DATA ED,79,ED,59,3E,60,ED,79,1C 1580 DATA ED,59,3E,02,CD,FD,A0,CB,47,C2,E2,A0 1590 DATA 5F,3E,08,CD,FD,A0,57,3E,00,CD,FD 1600 DATA A0,7A,CB,63,FB,C9,C5,ED,4B 1610 DATA 06,00,0C,ED,79,3E,8F,ED,79,ED,78,C1 1620 DATA C9,3E,02,CD,FD,A0,E6,01,C2,0D,A1 1630 DATA AF,CD,FD,A0,C9,END ========================================================================= 6.5.11 PSET (drawing a point) A point is drawn at any coordinate in VRAM (see figure 4.99). After setting the parameters as shown in Figure 4.100, writing 5XH (X means a logical operation) in R#46 causes the command to be executed. While the CE bit of S#2 is "1", the command is being executed. List 4.20 shows an example of using PSET. Figure 4.99 Actions of PSET command VRAM or expansion RAM --------------------------------------------------- | | | | | | | | | (DX,DY) | | x | | | | | | | | | | | | | --------------------------------------------------- MXD: memory selection 0 = VRAM, 1 = expansion RAM DX: origin X-coordinate (0 to 511) DY: origin Y-coordinate (0 to 1023) CLR (R#44:Colour register): point colour Figure 4.100 Register settings of PSET command > PSET register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0| |----+----+----+----+----+----+----+----| DX ---+ R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| | ----------------------------------------- | | origin ----------------------------------------- | R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| | |----+----+----+----+----+----+----+----| DY ---+ R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8| ----------------------------------------- ----------------------------------------- --+ R#44 | 0 | 0 | 0 | 0 | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) | ----------------------------------------- |co- |lour ----------------------------------------- | | 0 | 0 | 0 | 0 | 0 | 0 | CR1| CR0| CLR (GRAPHIC 5) |code ----------------------------------------- | |data ----------------------------------------- | | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) | ----------------------------------------- --+ ----------------------------------------- R#45 | 0 | -- | MXD| -- | -- | -- | -- | -- | ARG (Argument register) ----------------------------------------- | +-----------> memory selection > PSET command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 0 | 1 | 0 | 1 | L03| L02| L01| L00| CMR ----------------------------------------- | | +-------------------+ Logical operation List 4.20 Example of PSET command execution ========================================================================= ;**************************************************************** ; List 4.20 PSET sample ; to use, set H, L, E, A as follows ; pset (x:H, y:L), color:E, logi-OP:A ;**************************************************************** ; PUBLIC PSET RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- PSET: DI PUSH AF CALL WAIT.VDP LD BC,(WRVDP) INC C LD A,36 OUT (C),A LD A,80H+17 OUT (C),A PUSH BC INC C INC C XOR A OUT (C),H OUT (C),A OUT (C),L OUT (C),A POP BC LD A,44 OUT (C),A LD A,80H+17 OUT (C),A INC C INC C OUT (C),E XOR A OUT (C),A LD E,01010000B POP AF OR E OUT (C),A EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= 6.5.12 POINT (reading a colour code) POINT reads the colour code in any coordinate of VRAM (see Figure 4.101). After setting the parameters as shown in Figure 4.102, writing 40H in R#46 causes the command to be executed. While the CE bit of S#2 is "1", the command is being executed. After the command terminates, the colour code of the specified coordinate is set in S#7. List 4.21 shows an example of using POINT. Figure 4.101 Actions of POINT command VRAM or expansion RAM --------------------------------------------------- | | | | | | | | | (SX,SY) | | x | | | | | | | | | | | | | --------------------------------------------------- MXD: memory selection 0 = VRAM, 1 = expansion RAM SX: origin X-coordinate (0 to 511) SY: origin Y-coordinate (0 to 1023) Figure 4.102 Register settings of POINT command > POINT register setup MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0| |----+----+----+----+----+----+----+----| SX ---+ R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| | ----------------------------------------- | | origin ----------------------------------------- | R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| | |----+----+----+----+----+----+----+----| SY ---+ R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8| ----------------------------------------- ----------------------------------------- R#45 | -- | -- | -- | MXS| -- | -- | -- | -- | ARG (Argument register) ----------------------------------------- | +-----------> memory selection > POINT command execution MSB 7 6 5 4 3 2 1 0 LSB ----------------------------------------- R#46 | 0 | 1 | 0 | 0 | -- | -- | -- | -- | CMR ----------------------------------------- ----------------------------------------- S#2 | -- | -- | -- | -- | -- | -- | -- | CE | CMR ----------------------------------------- when the command ends : 0 ----------------------------------------- --+ S#7 | 0 | 0 | 0 | 0 | C3 | C2 | C1 | C0 | CL (GRAPHIC 4,6) | ----------------------------------------- |co- |lour ----------------------------------------- | | 0 | 0 | 0 | 0 | 0 | 0 | C1 | C0 | CL (GRAPHIC 5) |code ----------------------------------------- | |data ----------------------------------------- | | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 | CL (GRAPHIC 7) | ----------------------------------------- --+ List 4.21 Example of POINT command execution ========================================================================= ;**************************************************************** ; List 4.21 POINT sample ; to use, set H, L as follows ; POINT ( x:H, y:L ) ; returns: A := COLOR CODE ;**************************************************************** ; PUBLIC POINT RDVDP: EQU 0006H WRVDP: EQU 0007H ;----- program start ----- POINT: DI CALL WAIT.VDP LD A,(WRVDP) LD C,A INC C LD A,32 OUT (C),A LD A,80H+17 OUT (C),A INC C INC C XOR A OUT (C),H OUT (C),A OUT (C),L OUT (C),A DEC C DEC C OUT (C),A LD A,80H+45 OUT (C),A LD A,01000000B OUT (C),A LD A,80H+46 OUT (C),A CALL WAIT.VDP LD A,7 CALL GET.STATUS PUSH AF XOR A CALL GET.STATUS POP AF EI RET GET.STATUS: PUSH BC LD BC,(WRVDP) INC C OUT (C),A LD A,8FH OUT (C),A LD BC,(RDVDP) INC C IN A,(C) POP BC RET WAIT.VDP: LD A,2 CALL GET.STATUS AND 1 JP NZ,WAIT.VDP XOR A CALL GET.STATUS RET END ========================================================================= List 4.22 PAINT routine using PSET and POINT ========================================================================= ;**************************************************************** ; List 4.22 paint routine using PSET and POINT ; ENTRY: X:H, Y:L, BORDER COLOR:D, PAINT COLOR:E ;**************************************************************** ; EXTRN PSET EXTRN POINT Q.LENGTH EQU 256*2*2 MAX.Y EQU 211 ;----- paint main routine ----- PAINT: CALL POINT CP D RET Z CALL INIT.Q LD (COL),DE CALL PUT.Q LD A,(COL) LD E,A XOR A ;logi-OP : PSET CALL PSET PAINT0: CALL GET.Q RET C INC H CALL NZ,PAINT.SUB DEC H JP Z,PAINT1 DEC H CALL PAINT.SUB INC H PAINT1: DEC L LD A,-1 CP L CALL NZ,PAINT.SUB INC L INC L LD A,MAX.Y CP L CALL NC,PAINT.SUB JP PAINT0 ;----- check point and pset ----- PAINT.SUB: CALL POINT LD D,A LD A,(BORD) CP D RET Z LD A,(COL) CP D RET Z LD E,A XOR A CALL PSET CALL PUT.Q RET ;----- init Q.BUFFER pointer ----- INIT.Q: PUSH HL LD HL,Q.BUF LD (Q.TOP),HL LD (Q.BTM),HL POP HL RET ;----- put point to Q.BUF (X:H , Y:L) ----- PUT.Q: EX DE,HL LD HL,(Q.TOP) LD BC,Q.BUF+Q.LENGTH+1 OR A ;clear CARRY PUSH HL SBC HL,BC POP HL JP C,PUT.Q1 LD HL,Q.BUF PUT.Q1: LD (HL),D INC HL LD (HL),E INC HL LD (Q.TOP),HL EX DE,HL RET ;----- take point data to D, E ----- ; returns: NC H:x, L:y ; C buffer empty GET.Q: LD HL,(Q.BTM) LD BC,(Q.TOP) OR A SBC HL,BC JP NZ,GET.Q0 SCF RET GET.Q0: LD HL,(Q.BTM) LD BC,Q.BUF+Q.LENGTH+1 OR A PUSH HL SBC HL,BC POP HL JP C,GET.Q1 LD HL,Q.BUF GET.Q1: LD D,(HL) INC HL LD E,(HL) INC HL LD (Q.BTM),HL OR A EX DE,HL RET ;----- work area ----- COL DS 1 BORD DS 1 Q.TOP DS 2 Q.BTM DS 2 Q.BUF DS Q.LENGTH END ========================================================================= List 4.23 Example of using the PAINT routine ========================================================================= 1000 '*********************************************** 1010 ' list 4.23 paint routine using POINT and PSET 1020 ' Position cursor at beginnig of paint area and press the space bar. 1030 '*********************************************** 1040 ' 1050 SCREEN 5 1060 FOR I=0 TO 50 1070 LINE -(RND(1)*255,RND(1)*211),15 1080 NEXT 1090 I=&HA000 :DEF USR=I 1100 READ A$ 1110 IF A$="END" THEN 1150 1120 POKE I,VAL("&H"+A$):I=I+1 1130 READ A$ 1140 GOTO 1110 1150 X=128:Y=100:COL=15:PCOL=2 1160 CURS=0 1170 A=STICK(0) 1180 CURS=(CURS+1) AND 1 1190 LINE (X-5,I)-(X+5,I),15,,XOR 1200 LINE (X,Y-5)-(X,Y+5),15,,XOR 1210 IF CURS=1 THEN 1310 1220 IF A=1 THEN Y=Y-1 1230 IF A=2 THEN Y=Y-1:X=X+1 1240 IF A=3 THEN X=X+1 1250 IF A=4 THEN X=X+1:Y=Y+1 1260 IF A=5 THEN Y=Y+1 1270 IF A=6 THEN Y=Y+1:X=X-1 1280 IF A=7 THEN X=X-1 1290 IF A=8 THEN X=X-1:Y=Y-1 1300 IF STRIG(9) THEN GOSUB 1320 1310 GOTO 1170 1320 POKE &HA8CA,Y 1330 POKE &HA8CB,X 1340 POKE &HA8CD,COL 1350 POKE &HA8CC,PCOL 1360 A=USR(0) 1370 RETURN 1380 DATA ED,73,00,A8,31,CA,A8,2A,CA,A8,ED,5B,CC,A8,CD,67 1390 DATA A0,ED,7B,00,A8,C9,E5,21,D4,A8,22,D0,A8,22,D2,A8 1400 DATA E1,C9,EB,2A,D0,A8,01,D5,AC,B7,E5,ED,42,E1,DA,34 1410 DATA A0,21,D4,A8,72,23,73,23,22,D0,A8,EB,C9,2A,D2,A8 1420 DATA ED,4B,D0,A8,B7,ED,42,C2,4C,A0,37,C9,2A,D2,A8,01 1430 DATA D5,AC,B7,E5,ED,42,E1,DA,5D,A0,21,D4,A8,56,23,5E 1440 DATA 23,22,D2,A8,B7,EB,C9,CD,B8,A0,BA,C8,CD,16,A0,ED 1450 DATA 53,CE,A8,CD,22,A0,3A,CE,A8,5F,AF,CD,F4,A0,CD,3D 1460 DATA A0,D8,24,C4,A1,A0,25,CA,8F,A0,25,CD,A1,A0,24,2D 1470 DATA 3E,FF,BD,C4,A1,A0,2C,2C,3E,D3,BD,D4,A1,A0,C3,7E 1480 DATA A0,CD,B8,A0,57,3A,CF,A8,BA,C8,3A,CE,A8,BA,C8,5F 1490 DATA AF,CD,F4,A0,CD,22,A0,C9,F3,CD,3A,A1,ED,4B,06,00 1500 DATA 0C,3E,20,ED,79,3E,91,ED,79,0C,0C,AF,ED,61,ED,79 1510 DATA ED,69,ED,79,0D,0D,ED,79,3E,AD,ED,79,3E,40,ED,79 1520 DATA 3E,AE,ED,79,CD,3A,A1,3E,07,CD,2A,A1,F5,AF,CD,2A 1530 DATA A1,F1,FB,C9,F3,F5,CD,3A,A1,ED,4B,06,00,0C,3E,24 1540 DATA ED,79,3E,91,ED,79,C5,0C,0C,AF,ED,61,ED,79,ED,69 1550 DATA ED,79,C1,3E,2C,ED,79,3E,91,ED,79,0C,0C,ED,59,AF 1560 DATA ED,79,1E,50,F1,B3,ED,79,FB,C9,C5,ED,4B,06,00,0C 1570 DATA ED,79,3E,8F,ED,79,ED,78,C1,C9,3E,02,CD,2A,A1,E6 1580 DATA 01,C2,3A,A1,AF,CD,2A,A1,C9 1590 DATA END ========================================================================= 6.6 Speeding Up Commands MSX-VIDEO performs various screen management duties in addition to executing the specified commands. Sometimes the command execution speed seems to be a bit slow because of this. Thus, by discarding these operations, the speed of the command executions can be made faster. This can be done using the following method. 1. Sprite display inhibition This method is useful since speedup can be realised while the screen remains displayed. Set "1" to bit 1 of R#8. 2. Screen display inhibition This method cannot be used frequently except in the case of initialising the screen, since the screen fades out in this mode. Set "1" to bit 6 of R#1. 6.7 Register Status at Command Termination Table 4.7 shows the register status at the command termination for each command. When the number of dots to be executed in Y direction assumes N, the values of SY*, DY*, and NYB can be calculated as follows: SY*=SY+N, DY*=DY+N .................... when DIY bit is 0 SY*=SY-N, DY*=DY-N .................... when DIY bit is 1 NYB=NY-N Note: when MAJ bit is 0 in LINE, N = N - 1. Table 4.7 Register status at command termination ---------------------------------------------------------------------------- | command name | SX | SY | DX | DY | NX | NY | CLR |CMR H|CMR L| ARG | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | HMMC | --- | --- | --- | . | --- | # | --- | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | YMMM | --- | . | --- | . | --- | # | --- | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | HMMM | --- | . | --- | . | --- | # | --- | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | HMMV | --- | --- | --- | . | --- | # | --- | 0 | --- | --- | ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- | LMMC | --- | --- | --- | . | --- | # | --- | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | LMCM | --- | . | --- | --- | --- | # | . | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | LMMM | --- | . | --- | . | --- | # | --- | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | LMMV | --- | --- | --- | . | --- | # | --- | 0 | --- | --- | ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- | LINE | --- | --- | --- | . | --- | --- | --- | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | SRCH | --- | --- | --- | --- | --- | --- | --- | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | PSET | --- | --- | --- | --- | --- | --- | --- | 0 | --- | --- | |--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----| | POINT | --- | --- | --- | --- | --- | --- | . | 0 | --- | --- | ---------------------------------------------------------------------------- --- : no change . : coordinate (SY*, DY*) and the colour code at the command termination # : the number of counts (NYB), when the screen edge is fetched